[image: image2.wmf]

Card

-

specific data that

describes the difference

between GSC

-

IS Card

Edge Interface

commands and the card

commands

 Client

Application

Vendor SPS

CAD

Card

Capability

Contai

ner

GSC Data

Card Edge Interface (CEI)

Basic Services Interface (BSI)

GSC

-

IS

compliant

Smart Card

[image: image3.png]NIST

National Institute of
Standards and Technology
Technology Administration

U.S. Department of Commerce

Government Smart Card Interoperability Specification

Final Draft Version 2.1

Eric Dalci

Jim Dray

Alan Goldfine

Michaela Iorga

Teresa Schwarzhoff

John Wack

June 13, 2003

[image: image4.wmf]Client Application

Basic Services Interface (BSI)

Extended Service Interface(s) (XSI)

Virtual Card Edge Interface (VCEI)

Card Reader Driver

Card Reader

GSC

-

IS Compliant Smart Card

Data Model Object (DMO)

CCC & VCEI Protocol

SPS

Host

PC

Smart Card

Reader

Smart Card

SPM

Client Application

Basic Services Interface (BSI)

Extended Service Interface(s) (XSI)

Virtual Card Edge Interface (VCEI)

Card Reader Driver

Card Reader

GSC

-

IS Compliant Smart Card

Data Model Object (DMO)

Data Model Object (DMO)

CCC & VCEI Protocol

SPS

Host

PC

Smart Card

Reader

Smart Card

SPM

[image: image5.wmf]
[image: image6.wmf]

Shift Tuple

Std Tuple

SL

00

P

FC

P

Ext. FC

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s research, guidance, and outreach efforts in computer security, and its collaborative activities with industry, government, and academic organizations.
Natl. Inst. Stand. Technol. Interagency Report 6887 – 2003 Edition, 239 pages (June 2003)

THIS PAGE INTENTIONALLY LEFT BLANK.

Foreword

(a)
The Government Smart Card Initiative
The Presidential Budget for Fiscal Year 1998 stated: “The Administration wants to adopt ‘smart card’ technology so that, ultimately, every Federal employee will be able to use one card for a wide range of purposes, including travel, small purchases, and building access.” The General Services Administration (GSA) was requested to take the lead in developing the Federal business tools of electronic commerce and smart cards. The Federal Smart Card Implementation Plan was then developed, under which GSA implemented a pilot program to test Government smart cards and related systems. As part of the implementation plan, GSA formed the Government Smart Card Inter-Agency Advisory Board (GSC-IAB) to serve as a steering committee for the U.S. Government Smart Card (GSC) program.

In 1999, the National Institute of Standards and Technology (NIST) agreed to lead development of technical specifications and standards related to the GSC program. NIST represents the GSC program in industry, government, and formal standards organizations, as appropriate, to promote GSC technology. NIST is also charged with developing a comprehensive GSC conformance test program.

In May 2000, GSA awarded Contract No. GS00T00ALDXXXX to five prime contractors to provide “Common Access Smart ID Card” goods and services. Information on the use and applicability of the GSA Contract can be found at http://www.gsa.gov/smartcard.

The GSC-IAB established the Architecture Working Group (formerly known as the Technical Working Group), which consists of representatives of the contract awardees and federal agencies. The AWG, chaired and led by NIST, developed the Government Smart Card Interoperability Specification (GSC-IS), version 1.0. This specification defined the Government Smart Card Interoperability Architecture, which satisfies the core interoperability requirements of the Common Access Smart ID Card contract and the GSC Program as a whole. The AWG subsequently updated version 1.0 and released 2.0.

Products available under the contract will be subjected to a formal certification process to validate conformance to the requirements of the GSC-IS (see Section (c)).

(b)
Change Management, Requirements Definition, and Interpretation of the Specification

The GSC-IAB has the overall responsibility to develop the policy and procedures for handling revisions of the GSC-IS and any other maintenance. These procedures will be posted on the NIST smart card program web site (see Section (d)).

As additional language bindings to the Basic Services Interface (see Section 1.3) are developed, they will be added to the GSC-IS.

In the longer term, it is expected that the GSA-IAB will be the governing body for the identification of the U.S. Government’s GSC requirements. Major releases of the GSC-IS will be determined by the GSC-IAB. NISTIR 6887 will be submitted for formal standardization to the ANSI approved formal standards setting body for smart card technology.

The interpretation of the GSC-IS is the responsibility of the GSC-IAB. Interpretation issues and their resolutions will be detailed on the NIST program web site (see Section (d)).

(c)
Testing for Conformance

NIST is developing a comprehensive conformance test program in support of the GSC program. The goal of the conformance tests is to determine whether or not a given Government Smart Card product conforms with the GSC Specification. Qualified laboratories will perform operational conformance testing. The GSC-IAB Conformance Committee is chaired by GSA, with representatives from the federal agencies and GSA contract awardees.

NIST is working on user guidance for achieving conformance certification for the various elements of the GSC-IS framework. This guidance will be posted at http://smartcard.nist.gov
(d)
NIST Government Smart Card Program Web Site

NIST maintains a publicly accessible web site at http://smartcard.nist.gov
. This page contains information on all aspects of the GSC program related to the GSC-IS, including:

· General program descriptions and updates

· The current version of the GSC-IS

· GSC-IS revision and standardization plans

· A list of errata and other changes to the last published version of the GSC-IS

· A list of interpretations and clarifications of the GSC-IS, as issued by the GSC-IAB

· Details of the GSC-IS interpretation procedures

· Details of the GSC-IS conformance-testing program.

Acknowledgements

The authors would like to acknowledge the efforts of the original Government Smart Card Interoperability Committee, the Government Smart Card Interagency Advisory Board, the General Services Administration, the prime contractors associated with the Smart Access Common ID Card contract, and the NIST smart card team. Composed of industry and government representatives, the Interoperability Committee developed the first Government Smart Card Interoperability Specification (version 1.0) during the summer of 2000.

The efforts of the GSC Architecture Work Group (formerly known as Technical Working Group) of the Government Smart Card Interagency Advisory Board are particularly recognized. Chaired by the National Institute of Standards and Technology, the AWG was responsible for reviewing the original Government Smart Card Interoperability Specification. The AWG has been a major contributor to the development of this new version of the Government Smart Card Interoperability Specification. Special recognition is extended to the AWG.

THIS PAGE INTENTIONALLY LEFT BLANK.

Table of Contents

1-11.
Introduction

1-11.1
Background

1-11.2
Scope, Limitations, and Applicability of the Specification

1-21.3
Conforming to the Specification

2-12.
Architectural Model

2-12.1
Overview

2-22.2
Basic Services Interface Overview

2-32.3
Extended Service Interfaces Overview

2-32.4
Virtual Card Edge Interface Overview

2-32.5
Roles of the BSI and VCEI

2-42.6
GSC-IS Data Model Overview

2-42.7
Card Capabilities Container Overview

2-42.8
Service Provider Software Overview

2-52.9
Card Reader Drivers

3-13.
Access Control Model

3-13.1
Available Access Control Rules

3-33.2
Determining Containers

3-43.3
Establishing a Security Context

3-53.3.1 PIN Verification

3-53.3.2 External Authentication

3-63.3.3 Secure Messaging

4-14.
Basic Services Interface

4-14.1
Overview

4-24.2
Binary Data Encoding

4-34.3
Mandatory Cryptographic Algorithms

4-34.4
BSI Return Codes

4-44.5
Smart Card Utility Provider Module Interface Definition

4-44.5.1 Pseudo IDL Definition

4-54.5.2 Rules

4-74.5.3 gscBsiUtilAcquireContext()

4-94.5.4 gscBsiUtilConnect()

4-104.5.5 gscBsiUtilDisconnect()

4-114.5.6 gscBsiUtilBeginTransaction()

4-124.5.7 gscBsiUtilEndTransaction()

4-134.5.8 gscBsiUtilGetVersion()

4-144.5.9 gscBsiUtilGetCardProperties()

4-154.5.10 gscBsiUtilGetCardStatus()

4-164.5.11 gscBsiUtilGetExtendedErrorText()

4-174.5.12 gscBsiUtilGetReaderList()

4-184.5.13 gscBsiUtilPassthru()

4-194.5.14 gscBsiUtilReleaseContext()

4-204.6
Smart Card Generic Container Provider Module Interface Definition

4-204.6.1 gscBsiGcDataCreate()

4-214.6.2 gscBsiGcDataDelete()

4-224.6.3 gscBsiGcGetContainerProperties()

4-244.6.4 gscBsiGcReadTagList()

4-254.6.5 gscBsiGcReadValue()

4-264.6.6 gscBsiGcUpdateValue()

4-274.7
Smart Card Cryptographic Provider Module Interface Definition

4-274.7.1 gscBsiGetChallenge()

4-284.7.2 gscBsiSkiInternalAuthenticate()

4-294.7.3 gscBsiPkiCompute()

4-304.7.4 gscBsiPkiGetCertificate()

4-314.7.5 gscBsiGetCryptoProperties()

5-15.
Virtual Card Edge Interface

5-15.1
GSC-IS ISO Conformant APDUs

5-35.1.1 Generic File Access APDUs

5-115.1.2 Access Control APDUs

5-185.1.3 Public Key Operations APDUs

5-215.2
Mapping Default APDUs to Native APDU Sets

5-215.2.1 The CCC Command and Response Tuples

5-215.2.2 Native APDU Mapping and CCC Grammar

5-225.2.3 Detecting Card APDUs

5-235.2.4 Default Status Code Responses

5-235.3
Card Edge Interface for VM Cards

5-245.3.1 Virtual Machine Card Access Control Rule Configuration

5-245.3.2 Virtual Machine Card Edge General Error Conditions

5-255.3.3 Common Interface Methods Virtual Machine Card Edge Interface

5-425.3.4 Generic Container Provider Virtual Machine Card Edge Interface

5-455.3.5 Symmetric Key Provider Virtual Machine Card Edge Interface

5-495.3.6 Public Key Provider Virtual Machine Card Edge Interface

6-16.
Card Capabilities Container

6-16.1
Overview

6-26.2
Procedure for Accessing the CCC

6-26.2.1 General CCC Retrieval Sequence

6-46.2.2 Card Capabilities Container Structure

6-56.3
CCC Fields Description

6-56.3.1 Card Identifier Description

6-56.3.2 Capability Container Version Number

6-66.3.3 Capability Grammar Version Number

6-66.3.4 Applications CardURL Structure

6-66.3.5 PKCS#15

6-66.3.6 Registered Data Model Number

6-66.3.7 Access Control Rules Table

6-76.3.8 Card APDUs

6-76.3.9 Redirection Tag

6-86.3.10 Capability and Status Tuples

6-86.3.11 Capability Tuples

6-96.3.12 Prefix and Suffix Codes

6-96.3.13 Descriptor Codes

6-96.3.14 Status Tuples

6-106.3.15 Next CCC Description

6-106.4
CCC Formal Grammar Definition

7-17.
Container Selection and Discovery

7-17.1
AID Abstraction: The Universal AID

7-17.2
The CCC Universal AID and CCC Applet

7-17.3
The Applications CardURL

7-37.4
Using the Applications CardURL Structure for Container Selection

7-37.5
File System Cards: Selecting Containers

7-37.6
VM Cards: Selecting Containers and Applets

7-37.7
Using the Applications CardURL Structure for Identifying Access Control Rules

8-18.
Data Model

8-18.1
Data Model Overview

8-18.2
Internal Tag-Length-Value Format

8-28.3
Structure and Length Values for Cards Requiring the File System Card Edge

8-28.4
Structure and Length Values for Cards Requiring the Virtual Machine Card Edge

Appendices

8-AAppendix A— Normative References

-1
1Appendix B— Informative References
B-

1Appendix C— GSC Data Model
C-

1Appendix D— DoD Common Access Card (CAC) Data Model
D-

1D.1 CAC Data Model Specific
D-

1Appendix E— C Language Binding for BSI Services
E-

1E.1
Type Definitions for BSI Functions
E-

1E.2
Parameter Format and Buffer Size Discovery Process
E-

1E.2.1
Variable Length String Data
E-

1E.3
Discovery Mechanisms Code Samples
E-

1E.4
Smart Card Utility Provider Module Interface Definition
E-

1E.4.1
gscBsiUtilAcquireContext()
E-

1E.4.2
gscBsiUtilConnect()
E-

1E.4.3
gscBsiUtilDisconnect()
E-

1E.4.4
gscBsiUtilBeginTransaction()
E-

1E.4.5
gscBsiUtilEndTransaction()
E-

1E.4.6
gscBsiUtilGetVersion()
E-

1E.4.7
gscBsiUtilGetCardProperties()
E-

1E.4.8
gscBsiUtilGetCardStatus()
E-

1E.4.9
gscBsiUtilGetExtendedErrorText()
E-

1E.4.10
gscBsiUtilGetReaderList()
E-

1E.4.11
gscBsiUtilPassthru()
E-

1E.4.12
gscBsiUtilReleaseContext()
E-

1E.5
Smart Card Generic Container Provider Module Interface Definition
E-

1E.5.1
gscBsiGcDataCreate()
E-

1E.5.2
gscBsiGcDataDelete()
E-

1E.5.3
gscBsiGcGetContainerProperties()
E-

1E.5.4
gscBsiGcReadTagList()
E-

1E.5.5
gscBsiGcReadValue()
E-

1E.5.6
gscBsiGcUpdateValue()
E-

1E.6
Smart Card Cryptographic Provider Module Interface Definition
E-

1E.6.1
gscBsiGetChallenge()
E-

1E.6.2
gscBsiSkiInternalAuthenticate()
E-

1E.6.3
gscBsiPkiCompute()
E-

1E.6.4
gscBsiPkiGetCertificate()
E-

1E.6.5
gscBsiGetCryptoProperties()
E-

1Appendix F— Java Language Binding for BSI Services
F-

1F.1
Interfaces and classes
F-

1F.2
Smart Card Utility Provider Module Interface Definition
F-

1F.2.1
gscBsiUtilAcquireContext()
F-

1F.2.2
gscBsiUtilConnect()
F-

1F.2.3
gscBsiUtilDisconnect()
F-

1F.2.4
gscBsiUtilBeginTransaction()
F-

1F.2.5
gscBsiUtilEndTransaction()
F-

1F.2.6
gscBsiUtilGetVersion()
F-

1F.2.7
gscBsiUtilGetCardProperties()
F-

1F.2.8
gscBsiUtilGetCardStatus()
F-

1F.2.9
gscBsiUtilGetExtendedErrorText()
F-

1F.2.10
gscBsiUtilGetReaderList()
F-

1F.2.11
gscBsiUtilPassthru()
F-

1F.2.12
gscBsiUtilReleaseContext()
F-

1F.3
Smart Card Generic Container Provider Module Interface Definition
F-

1F.3.1
gscBsiGcDataCreate()
F-

1F.3.2
gscBsiGcDataDelete()
F-

1F.3.3
gscBsiGcGetContainerProperties()
F-

1F.3.4
gscBsiGcReadTagList()
F-

1F.3.5
gscBsiGcReadValue()
F-

1F.3.6
gscBsiGcUpdateValue()
F-

1F.4
Smart Card Cryptographic Provider Module Interface Definition
F-

1F.4.1
gscBsiGetChallenge()
F-

1F.4.2
gscBsiSkiInternalAuthenticate()
F-

1F.4.3
gscBsiPkiCompute()
F-

1F.4.4
gscBsiPkiGetCertificate()
F-

1F.4.5
gscBsiGetCryptoProperties()
F-

1Appendix G— Contactless Smart Card Requirements
G-

1G.1
Card to Reader Interoperability
G-

1G.2
Contactless Card Edge
G-

1G.3
Data Model Requirements
G-

1Appendix H— Acronyms
H-

Figures and Tables

2-2Figure 2-1: The GSC-IS Architectural Model

6-1Figure 6-1: The Card Capability Container

6-2Figure 6-2: Location of the CCC Elementary File in a file system card

6-14Figure 6-3: Shift Tuple Sequence (SL: shift level)

8-2Figure 8‑1: T-Buffer Format

8-2Figure 8‑2: V-Buffer Format

3-2Table 3-1: BSI Access Method Types

3-2Table 3-2: BSI Access Control Rule Types

3-3Table 3-3: ACRs for Generic Container Provider Module Services

3-4Table 3-4: ACRs for Cryptographic Provider Module Services

4-3Table 4-1: BSI Return Codes

4-5Table 4-2: Description of Symbols

4-6Table 4-3: Mapping Pseudo IDL to Java

4-6Table 4-4: Mapping Pseudo IDL to C

5-1Table 5-1: GSC-IS APDU Set

5-2Table 5-2: APDU Command and Response Structure

5-2Table 5-3: APDU Command and Response Structure

5-3Table 5-4: Generic File Access APDUs

5-11Table 5-5: Access Control APDUs

5-12Table 5‑6: Algorithm Identifiers for Authentication APDUs

5-18Table 5-7: Public Key Operations APDUs

5-22Table 5-8: CARD APDUs Values

5-23Table 5-9: GSC-IS Status Code Responses

5-24Table 5-10: Virtual Machine Card Edge APDUs

5-25Table 5-11a: Successful Conditions

5-25Table 5-11b: General Error Conditions

5-25Table 5-12: Common Interface Methods VM APDUs

5-26Table 5-13: ACRs assigned to the Common Interface Methods VM CEI

5-33Table 5-14: Applet Information String

5-34Table 5-15: ACR Table

5-34Table 5-16: Applet/Object ACR Table

5-35Table 5-17: Access Method Provider Table

5-36Table 5-18: Service Applet Table

5-37Table 5-19: Applet/Object ACR table for a Single Object

5-37Table 5-20: Access Method Provider Table

5-38Table 5-21: Service Applet Table

5-42Table 5-22: Generic Container VM APDUs

5-45Table 5-23: Symmetric Key VM APDUs

6-4Table 6-1: CCC Fields

6-8Table 6-2: Tuple Byte Descriptions

6-9Table 6-3: Parameter and Function Codes

6-10Table 6-4: Status Tuples

6-10Table 6-5: Standard Status Code Responses

6-12Table 6-6: Default vs. Schlumberger DF APDU

6-13Table 6-7: Tuple Creation Sequence

6-13Table 6-8: Derived Select DF Tuple

6-14Table 6‑9: Example of Extended Function Code

6-15Table 6-10: Descriptor Codes

1Table E‑1: BSI functions using the discovery method
E-

THIS PAGE INTENTIONALLY LEFT BLANK.

1. Introduction

1.1 Background

A typical configuration for a smart card system consists of a host computer with one or more smart card readers attached to hardware communications ports. Smart cards can be inserted into the readers, and software running on the host computer communicates with these cards using a protocol defined by ISO 7816-4 [ISO4] and 7816-8 [ISO8]. The ISO standard smart card communications protocol defines Application Protocol Data Units (APDU) that are exchanged between smart cards and host computers. This APDU based interface is referred to as the “virtual card edge” and the two terms are used interchangeably.

Client applications have traditionally been designed to communicate with ISO smart cards using the APDU protocol through low-level software drivers that provide an APDU transport mechanism between the client application and a smart card. Smart card families can implement the APDU protocol in a variety of ways, so client applications must have intimate knowledge of the APDU set of the smart card they are communicating with. This is generally accomplished by programming a client application to work with a specific card, since it would not be practical to design a client application to accommodate the different APDU sets of a large number of smart card families.

The tight coupling between client applications and smart card APDU sets has several drawbacks. Applications programmers must be thoroughly familiar with smart card technology and the complex APDU protocol. If the cards that an application is hard coded to use become commercially unavailable, the application must be redesigned to use different cards. Customers also have less freedom to select different smart card products, since their applications will only work with one or a small number of similar cards.

This Government Smart Card Interoperability Specification (GSC-IS) provides solutions to a number of the interoperability challenges associated with smart card technology. The original version of the GSC-IS (version 1.0, August 2000) was developed by the GSC Interoperability Committee led by the General Services Administration (GSA) and the National Institute of Standards and Technology (NIST), in association with the Smart Access Common Identification Card contract (Contract No. GS00T00ALD0208).

1.2 Scope, Limitations, and Applicability of the Specification

The GSC-IS defines an architectural model for interoperable smart card service provider modules, compatible with both file system cards and virtual machine cards. Smart cards using both the T=0 and T=1 [ISO3] communications protocols are supported. The GSC-IS includes a Basic Services Interface (BSI), which addresses interoperability of a core set of smart card services at the interface layer between client applications and smart card service provider modules. The GSC-IS also defines a mechanism at the card edge layer for interoperation with smart cards that use a wide variety of APDU sets, including both file system cards and virtual machine cards.

Interoperability is not addressed for the following areas:

· Smart card initialization

· Cryptographic key management

· Communications between smart cards and card readers

· Communications between smart card readers and host computer systems.

1.3 Conforming to the Specification

A smart card service provider module implementation that claims conformance to the GSC-IS must implement each of the following:

· The Architectural Model, as defined in Chapter 2
· The Access Control Model, as defined in Chapter 3
· The Basic Services Interface, as defined in Chapter 4
· The Virtual Card Edge Interface, as defined in Chapter 5
· The Card Capabilities Container, as defined in Chapter 6
· Container Naming, as defined in Chapter 7
· Support for both of the Container Data Models defined in Chapter 8 and the appropriate Appendices

· At least one language binding for BSI Services, as defined in the Appendices.

A smart card that claims conformance to the GSC-IS must support each of the following:

· The Architectural Model as it relates to smart cards, i.e., as defined in sections 1, 4, 5, and 6 of Chapter 2
· The Access Control Model, as defined in Chapter 3
· Either the file system card edge interface or the VM card edge interface, as defined in Chapter 5
· The Card Capabilities Container, as defined in Chapter 6
· Container Naming, as defined in Chapter 7

· One of the Container Data Models defined in Chapter 8 and the appropriate Appendix. The Access Control File and associated SEIWG string defined in Appendix C are mandatory for contact-type GSC cards, and the SEIWG container defined in Appendix G is mandatory for contactless GSC cards.

As used in this document, the conformance keywords “shall” and “must” (which are interchangeable) denote mandatory features of the GSC-IS. The keyword “should” denotes a feature that is recommended but not mandatory, while the keyword “may” denotes a feature whose presence or absence does not preclude conformance.

2. Architectural Model

2.1 Overview

The GSC-IS provides interoperability at two levels: the service call level and the card command (APDU) level. A brief explanation of these interoperability levels follows:

· Service Call Level: This level is concerned with functional calls required to obtain various services from the card (e.g., encryption, authentication, digital signatures, etc.). The GSC-IS addresses interoperability at this level by defining an Applications Programming Interface (API) called the Basic Services Interface (BSI) that defines a common high level model for smart card services. The module that implements the BSI and provides an interoperable set of smart card services to client applications is called the Service Provider Module (SPM). These services are logically divided into three modules that provide utility, secure data storage, and cryptographic services. Since an SPM generally will be implemented through a combination of hardware and software, the software component of the SPM is referred to as the Service Provider Software (SPS).

· Card Command Level: This level is concerned with the exact APDUs (ISO4) that are sent to the card to obtain the required service. The GSC-IS addresses interoperability at this level by defining the API called the Virtual Card Edge Interface (VCEI) that consists of a card-independent standard set of APDUs that support the functions defined in the BSI and implemented by the SPM.

The SPM is a combination of both these levels and it includes:

· SPS, implementing both BSI and VCEI interfaces

· Smart card reader driver

· Smart card reader

· GSC-IS conformant smart card

Certain data sets need to be available in the card to support the interoperability provided by the BSI and VCEI. To ensure that there is a standard format (or schema) for storing these data sets, and to enable uniform access and interpretation, the GSC-IS defines Data Models. These Data Models provide data portability across GSC-IS conformant card implementations, ensuring that a core set of data elements is available on all cards. The storage entities for various categories of data sets are called containers. . One of these containers, the Card Capability Container (CCC), describes the differences between a smart card’s native APDU set and the standard APDU set defined by the VCEI. An SPS retrieves a smart card’s CCC and uses it to perform the translation between the VCEI and the card’s native APDU set. The GSC-IS accommodates any smart card whose APDU set can be mapped to the VCEI via a CCC definition.

The components of the GSC-IS architecture are presented in Figure 2-1 and are further described in Sections 2.2 - 2.8. All objects below the client application layer are components of the SPM.

Figure 2-1: The GSC-IS Architectural Model

2.2 Basic Services Interface Overview

All Smart Card Service Provider Modules shall implement the BSI. The BSI is logically organized into three provider modules:

· Utility Provider Module: Provides utility services for obtaining a list of available card readers, establishing and terminating logical connections with a smart card, etc.

· Generic Container Provider Module: Provides a unified abstraction of the storage services of smart cards, presenting applications with a simple interface for managing generic containers of data elements in Tag/Length/Value format [ISO4].

· Cryptographic Provider Module: Provides fundamental cryptographic services such as random number generation, authentication, and digital signature generation.

The capabilities of a given SPM depend on the smart card available to the SPM when a client application requests a service through a BSI call. In cases where a service is not available, the BSI call shall return an error code indicating that the requested service is not available. For example, a user may insert a smart card that does not have public key cryptographic capabilities and then perform an operation that causes a client application to request a digital signature calculation from the associated SPM. Since the smart card cannot provide this service, the BSI shall return a “service not available” error code to the client application.

2.3 Extended Service Interfaces Overview

Because the BSI is not a complete operational interface, real world SPM implementations may support additional functionality outside the BSI domain. Because the BSI provides an interoperable interface, it is unable to address the varying operational requirements. Therefore, real world SPM implementations may support additional functionality outside the BSI domain. An SPM may therefore include an Extended Service Interface (XSI) that provides non-interoperable, but operationally required, functions. Since XSIs are implementation and application specific, they are accommodated by the GSC-IS architectural model but are not defined in the GSC-IS. Card initialization and cryptographic key management are examples of functions that must currently be implemented in the XSI domain.

2.4 Virtual Card Edge Interface Overview

ISO 7816-4 [ISO4] defines a hierarchical file system structure for smart cards. Smart cards that conform to ISO 7816-4 [ISO4] are therefore known as “file system” cards. The Card Operating System program of a file system card is usually hard coded into the logic of the smart card integrated circuit during the manufacturing process and cannot be changed thereafter.

In recent years other smart card architectures have been created that allow developers to load executable programs onto smart cards after the cards have been manufactured. As one example, JavaCard™ [JAVA] defines a Java Virtual Machine (VM) specification for smart card processors. Developers can load compiled Java applets onto a smart card containing the JavaCard™ VM, programmatically changing the behavior of the card.

Due to the widespread adoption of the JavaCard™ specification, the term “virtual machine smart card” is often used generically to refer to any smart card whose Card Operating System can be extended by loading executable programs onto the card (regardless of whether that card conforms to the JavaCard™ specification). This Specification uses the term “virtual machine smart card” in the general sense. A virtual machine smart card can theoretically be programmed to support any communications protocol, including the APDU based protocols of the ISO 7816-4 [ISO4] and 7816-8 [ISO8] standard.

The GSC-IS VCEI defines default sets of interoperable APDU level commands for both virtual machine and file system smart cards. The SPS of an SPM shall use the information provided by a smart card’s CCC to map that card’s native APDU set to the VCEI default set. The VCEI shall consist of:

· A card edge definition for file system cards

· A card edge definition for VM cards, composed of three providers:

· A generic container provider

· A symmetric key (SKI) cryptographic service provider

· A public key infrastructure (PKI) cryptographic service provider.

2.5 Roles of the BSI and VCEI

The service provider modules of the BSI are a higher level abstraction of the card level providers. Standardization at the VCEI layer establishes interoperability between any GSC conformant SPS and any GSC conformant smart card. Similarly, standardization at the BSI layer establishes interoperability between any GSC conformant application and any GSC conformant SPS. Vendor neutrality is assured because GSC smart cards are interchangeable at the VCEI and GSC SPSs are interchangeable at both the BSI and VCEI.

2.6 GSC-IS Data Model Overview

Each GSC-IS conformant smart card shall conform to a GSC-IS Data Model. GSC-IS Data Models define the set of containers and data elements within each container for cards supporting that Data Model. The GSC-IS defines two Data Models: the GSC Data Model (Appendix C) (formerly referred to as the J.8 Data Model in GSC-IS v1.0) and the Department of Defense Common Access Card Data Model (Appendix D). The following containers are mandatory in either Data Model:

· CCC for contact and contactless cards and

· Access control file with SEIWG string for contact cards or

· SEIWG container and SEIWG string for contactless cards.

The remaining containers and data elements are optional. However, if an implementation requires any of the containers and data elements defined in the Data Models, the containers and data elements must conform to the Data Model definitions. Data Model requirements are presented in Chapter 8.

Containers are accessed through the Generic Container Provider Module of the BSI. Access to the containers are subject to the Access Control Rules (ACR) defined in Chapter 3.

This document uses the terms “file,” “container,” and “object” synonymously.

2.7 Card Capabilities Container Overview

Each GSC-IS conformant card shall carry a Card Capabilities Container. The CCC is one of the mandatory containers that must be present in all GSC-IS Data Models. The purpose of the CCC is to describe the differences between a given card’s APDU set and the APDU set defined by the GSC-IS Virtual Card Edge Interface. The GSC-IS provides standard mechanisms for retrieving a CCC from a smart card (Section 6.2). Once the CCC for a particular card is obtained, software on the host computer (specifically, the SPS) uses this information to translate between the VCEI and the card’s native APDU set. Deviations from the card’s Data Model structure are represented in a CCC.

The CCC allows each GSC-IS smart card to carry the information needed by the SPS to communicate with that card. This general mechanism for dynamically translating APDU sets eliminates the need to distribute, install, and maintain card specific APDU level drivers on host computer systems.

The rules for constructing a valid CCC are defined in Section 6.3. All GSC-IS smart cards shall contain a CCC that conforms to this specification.

2.8 Service Provider Software Overview

The SPS component of an SPM shall implement the BSI and the VCEI. It is responsible for retrieving CCCs from cards, using this information to translate between the smart card’s native APDU set and the VCEI, and for handling the details of APDU level communications with the card. SPS implementations work with a particular card reader driver layer that transports APDUs between the SPS and the smart card.

2.9 Card Reader Drivers

The GSC-IS does not address interoperability between smart card readers and host computer systems. Several specifications already exist in this area, including the Personal Computer Smart Card (PC/SC, [PCSC]) specification and the OpenCard Framework (OCF, [OCF]). The choice of card reader driver software is influenced to some degree by the operating environment, although PC/SC and OCF have been ported to various operating systems.

Because card reader driver solutions are available and several of these have been widely adopted, the GSC-IS allows developers the freedom to choose any card reader driver that provides the reader level services required by the SPS layer including:

· Transport of “raw” (unprocessed) APDUs between the SPS layer and the smart card and

· Functions to provide a list of available readers,

· And to establish and terminate logical connections to cards inserted into readers.

Proprietary card reader drivers can also be used as long as they provide the raw APDU transport and card reader management functions required by an SPS. Some applications may have unique requirements that mandate a special purpose card reader. For example, the configuration required by a physical access control application may not be able to accommodate a PC/SC or OCF card reader driver layer and would therefore require a custom card reader driver.

The decision not to include a card reader driver layer specification in the GSC-IS has important consequences. This implies a pair-wise relationship between an SPS and the card reader driver. An SPS implementation works with a specific card reader driver and is constrained to operate with the card readers supported by that driver. The degree of interoperability between card readers and host computer systems is entirely determined by the card reader driver component.

In cases where an industry standard card reader driver component is chosen, it is possible to take advantage of existing conformance test programs and select from a range of commercially available, conformant card readers. If a special purpose (proprietary) card reader driver is chosen, these options may not be available. In some cases proprietary card reader drivers work only with proprietary card reader designs, and may therefore require development of special purpose conformance test programs.

THIS PAGE INTENTIONALLY LEFT BLANK.

3. Access Control Model

The smart card services and containers provided by a SPM are subject to a set of Access Control Rules (ACRs). ACRs are defined for each card service and default container when a GSC-IS-conformant smart card is initialized. The card level service providers are responsible for enforcing these ACRs and shall not provide a given service until the client application has fulfilled the applicable access control requirements. The GSC-IS specifies a discovery mechanism that allows client applications to determine the ACRs for a specific service provider or container.

It is important to note that an SPS acts as a transport and reformatting mechanism for the exchange of authentication data, such as PINs and cryptograms, between client applications and smart cards. When a client application and smart card service provider establish a security context, the primary job of the SPS is to reformat BSI level authentication structures into APDU level VCEI structures and vice versa. The current GSC-IS model does not include a mechanism for authenticating an SPS, and the SPS is not responsible for enforcing ACRs.

3.1 Available Access Control Rules

The ACRs available at the BSI level are as follows:

· Always: The corresponding service can be provided without restrictions.

· Never: The corresponding service can never be provided.

· External Authenticate: The corresponding service can be provided only after a “Get Challenge” APDU.

· PIN Protected: The corresponding service can be provided only if its associated personal identification number (PIN) code has been verified at some point prior to the service request.

· PIN Always: The corresponding service can be provided only if its associated PIN code has been verified immediately before each unique service request.

· External Authenticate or PIN: Either one of the two controls gives access to the service. This allows for a cardholder validation when a PIN pad is available and for an external authentication when no PIN pad is available. Or, this provides an authentication method when the application cannot be trusted to perform an external authentication and to protect the external authentication key.

· External Authenticate then PIN: The two methods must be chained successfully before access to the service is granted. This allows the authentication of both the client application and the user.

· External Authenticate and PIN: The two methods must be chained successfully before access to the service is granted. Order of the methods is not important.

· PIN then External Authenticate: The PIN presentation is followed by an External Authentication.

· Secure Channel (GP): The corresponding service can be provided only through a Secure Channel managed by a Global Platform [GLOB] Secure Messaging layer.

· Update Once: A target object can only be updated once during its lifetime.

· Secure Channel (ISO): The corresponding service can be provided through a Secure Channel managed by an ISO [ISO4],[ISO8] Secure Messaging layer.

BSI-level ACRs are a logical combination of primitive access methods. The BSI-level access methods and associated hexadecimal values are summarized in the Table 3-1. Hexadecimal values are assigned to the unAccessMethodType member of the BSIAuthenticator structure defined in Section 4.5.3.

Table 3-1: BSI Access Method Types

	Access Method Type
	Value
	Meaning

	BSI_AM_XAUTH
	0x02
	External Authentication.

	BSI_AM_SECURE_CHANNEL_GP
	0x04
	Secure Channel (Global Platform)

	BSI_AM_PIN
	0x06
	PIN code is required

	BSI_AM_SECURE_CHANNEL_ISO
	0x0B
	Secure Channel (ISO 7816-4)

The BSI-level ACRs and associated hexadecimal values are summarized in Table 3-2. Hexadecimal values are returned in the ACRType member of the BSIAcr structure defined in Section 4.6.3. The BSIAcr structure is present in the members of the GCacr structure defined in Section 4.6.3 and the CRYPTOacr strucuture defined in Section 4.7.5.

Table 3-2: BSI Access Control Rule Types

	Access Control Rule Type

(ACRType)
	Access Method List
	Logical

Relation between AMs
	Value
	Meaning

	BSI_ACR_ALWAYS
	–
	–
	0x00
	No access control rule is required

	BSI_ACR_NEVER
	–
	–
	0x01
	Operation is never possible

	BSI_ACR_XAUTH
	BSI_AM_XAUTH
	–
	0x02
	External Authentication.

	BSI_ACR_XAUTH_OR_PIN
	BSI_AM_XAUTH, BSI_AM_PIN
	OR
	0x03
	The object method can be accessed either after an External Authentication or after a successful PIN presentation

	BSI_SECURE_CHANNEL_GP
	BSI_AM_SECURE_CHANNEL_GP
	–
	0x04
	Secure Channel (Global Platform)

	BSI_ACR_PIN_ALWAYS
	BSI_AM_PIN
	–
	0x05
	PIN must be verified immediately prior to service request.

	BSI_ACR_PIN
	BSI_AM_PIN
	–
	0x06
	PIN code is required

	BSI_ACR_XAUTH_THEN_PIN
	BSI_AM_XAUTH, BSI_AM_PIN
	AND
	0x07
	External Authentication followed by a PIN presentation

	BSI_ACR_UPDATE_ONCE
	–
	–
	0x08
	The target object can only be updated once during its lifetime

	BSI_ACR_PIN_THEN_XAUTH
	BSI_AM_PIN, BSI_AM_XAUTH
	AND
	0x09
	PIN presentation followed by External Authentication

	Reserved for future use
	–
	–
	0x0A
	RFU

	BSI_SECURE_CHANNEL_ISO
	BSI_AM_SECURE_CHANNEL_ISO
	–
	0x0B
	Secure Channel (ISO 7816-4)

	BSI_ACR_XAUTH_AND_PIN
	BSI_AM_XAUTH, BSI_AM_PIN
	AND
	0x0C
	PIN presentation AND External Authentication in any order are required.

	Reserved for future use
	
	
	0x0D-0xFF
	RFU

The External Authentication method shall conform with ISO 7816-4 [ISO4] and 7816-8 [ISO8]. The mandated cryptographic algorithm is DES3-ECB [DES], with a double length key-size 16 bytes and a challenge of 8 bytes. This method is described in Section 3.3.2.

The ACR for the Secure Channel implies cryptographic operations performed at the APDU level. A pass-through function is provided in the BSI (Section 4.5.13) to allow applications to create a secure channel and operate inside this channel.

3.2 Determining Containers

Applications can retrieve the ACR that must be fulfilled to access a specific service or container. ACR retrieval processes are defined for each provider module as follows:

· Utility Service Provider Module: No access control is applied.

· Generic Container Service Provider Module: ACRs for generic container services are encoded in the GCacr structure returned by the function gscBsiGcGetContainerProperties().

· Cryptographic Service Provider Module: ACRs for cryptographic services are encoded in the CRYPTOacr structure returned by the function gscBsiGetCryptoProperties().

Each of the services associated with a provider module have a different set of allowable ACRs. When a provider module is created (instantiated), the module creator must assign the ACRs for each of the services provided by the module from the set of supported ACRs, listed in Tables 3-3 and 3-4.

Table 3-3: ACRs for Generic Container Provider Module Services

	Service
	ACR supported

	gscBsiGcDataCreate()
	BSI_ACR_ALWAYS

BSI_ACR_NEVER

BSI_ACR_PIN

BSI_ACR_XAUTH

	gscBsiGcDataDelete()
	BSI_ACR_ALWAYS

BSI_ACR_NEVER

BSI_ACR_PIN

BSI_ACR_XAUTH

	gscBsiGcReadTagList()
	BSI_ACR_ALWAYS

BSI_ACR_PIN

BSI_ACR_XAUTH

	gscBsiGcReadValue()
	BSI_ACR_ALWAYS

BSI_ACR_PIN

BSI_ACR_XAUTH

	gscBsiGcUpdateValue()
	BSI_ACR_ALWAYS

BSI_ACR_NEVER

BSI_ACR_PIN

BSI_ACR_XAUTH

BSI_ACR_UPDATE_ONCE

	gscBsiGcGetContainerProperties()
	BSI_ACR_ALWAYS

Table 3-4: ACRs for Cryptographic Provider Module Services

	Service
	ACR supported

	gscBsiGetChallenge()
	BSI_ACR_ALWAYS

	gscBsiSkiInternalAuthenticate()
	BSI_ACR_ALWAYS

BSI_ACR_PIN

BSI_ACR_XAUTH

	gscBsiPkiCompute()
	BSI_ACR_ALWAYS

BSI_ACR_PIN

BSI_ACR_XAUTH

	gscBsiPkiGetCertificate()
	BSI_ACR_ALWAYS

BSI_ACR_PIN

BSI_ACR_XAUTH

	gscBsiGetCryptoProperties()
	BSI_ACR_ALWAYS

Note: When using the gscBsiPkiCompute() function for signature operation, it is highly recommended that the implementation require BSI_ACR_PIN_ALWAYS for access control.

3.3 Establishing a Security Context

Once a client application has determined the ACR associated with a service or a container, it must establish a security context with the card. To fulfill the ACR for a container or service, the application builds a BSIAuthenticator data structure and passes it in a call to the gscBsiUtilAcquireContext() function.

Establishing a security context involves authentication of the parties involved in the service exchange. These parties include the user executing the client application, the client application itself, and the smart card. The GSC-IS ACRs are based on three general authentication mechanisms: PIN Verification, External Authentication, and Secure Messaging.

The External Authentication method assumes that the authentication key has been formerly distributed to both parties (client application and smart card) in a secure way.

It is important to note that at the smart card level, the privileges are granted sequentially. Prior to acquiring a new privilege, the client application shall release the previously acquired security context, if any exists, by calling the BSI’s function gscBsiUtilReleaseContext().

Sections 3.3.1 through 3.3.3 describe typical BSI call sequences that a client application would use for each of the three authentication mechanisms in order to acquire the context for the desired smart card service.
3.3.1 PIN Verification

For a PIN Verification known also as Card Holder Verification (CHV), the client application would make the following calls:

· Establish a logical connection with the card through a call to the BSI’s function gscBsiUtilConnect().

· Retrieve the ACRs for a desired card service through a call to either
gscBsiGcGetContainerProperties() or gscBsiGetCryptoProperties(). These interface methods return the ACRs for all services available from the smart card (Sections 4.6.3 or 4.7.5, respectively). If PIN Verification is required for a particular service (e.g., gscBsiGcReadValue() or gscBsiPkiCompute()), the ACR returned in the GCacr or CRYPTOacr structure for this service must be BSI_ACR_PIN.

· Call gscBsiUtilAcquireContext() with the BSIAuthenticator structures required to satisfy the ACR for the desired smart card service. In this example, for PIN verification, the BSI Authenticator structure shall contain the PIN value in the authValue field and accessMethodType set to BSI_ACR_PIN.

· Access the desired smart card service through subsequent BSI calls.

· Call gscBsiUtilReleaseContext() to release the security context.

3.3.2 External Authentication

A typical BSI sequence of calls for an External Authentication:

· Establish a logical connection with the card through a call to gscBsiUtilConnect().

· Retrieve the ACRs for a desired card service provider through a call to either gscBsi GcGetContainerProperties() or gscBsiGetCryptoProperties(). These interface methods return the ACRs for all services available from the smart card (Section 4.6.3 or Section 4.7.5 respectively). If External Authentication is required for a particular service (e.g., gscBsiGcReadValue() or gscBsiPkiCompute()), the ACR returned in the GCacr or CRYPTOacr structure for this service must be BSI_ACR_XAUTH.
· Call gscBsiGetChallenge() to retrieve a random challenge from the smart card. The random challenge is retained by the smart card for use in the subsequent verification step of the External Authentication protocol. The client application calculates a cryptogram by encrypting the random challenge using a symmetric External Authentication key. The client application may need to examine the keyIDOrReference member of the appropriate ACR returned in GCacr or CRYPTOacr to determine which External Authentication key it should use to encrypt the random challenge.

· The client application calls the BSI’s gscBsiUtilAcquireContext() function passing the cryptogram computed in the previous step.

· The smart card decrypts the Authenticator using its External Authentication key, and verifies that the resulting plaintext value matches the original random challenge value. The External Authentication key shall be securely distributed to the client application and to the smart card.

· Access the desired smart card service through subsequent BSI calls.

· Call gscBsiUtilReleaseContext() to release the security context.

3.3.3 Secure Messaging

Secure messaging involves the establishment of a secure channel between the client application and the smart card at the APDU level. The BSI provides a pass-through call that allows a client application to establish a direct APDU level secure channel with a card in accordance with the Global Platform [GLOB] or ISO 7816-4 [ISO4].

THIS PAGE INTENTIONALLY LEFT BLANK.

4. Basic Services Interface

4.1 Overview

An SPM must provide a BSI. Client applications communicate with the SPM through this interface. The SPS component of the SPM is directly responsible for implementing the BSI.

This chapter defines the BSI services, using notation similar to Interface Definition Language (IDL) which is referred to as pseudo IDL throughout this document. The set of services consists of 23 functions grouped into three functional modules as follows:

A Smart Card Utility Provider Module:

· gscBsiUtilAcquireContext()

· gscBsiUtilConnect()

· gscBsiUtilDisconnect()

· gscBsiUtilBeginTransaction()

· gscBsiUtilEndTransaction()

· gscBsiUtilGetVersion()

· gscBsiUtilGetCardProperties()

· gscBsiUtilGetCardStatus()

· gscBsiUtilGetExtendedErrorText()

· gscBsiUtilGetReaderList()

· gscBsiUtilPassthru()

· gscBsiUtilReleaseContext()

A Smart Card Generic Container Provider Module:

· gscBsiGcDataCreate()

· gscBsiGcDataDelete()

· gscBsiGcGetContainerProperties()

· gscBsiGcReadTagList()

· gscBsiGcReadValue()

· gscBsiGcUpdateValue()

A Smart Card Cryptographic Provider Module:

· gscBsiGetChallenge()

· gscBsiSkiInternalAuthenticate()

· gscBsiPkiCompute()

· gscBsiPkiGetCertificate()

· gscBsiGetCryptoProperties()

All SPM implementations must provide the full set of 23 functions as specified in this chapter. Based on the capabilities available, a given function call may return a BSI_NO_CARDSERVICE or BSI_NO SPSSERVICE error message in case the SPM does not provide the requested service. This error message may be returned by any BSI function that maps directly to a card-level operation, as follows:

· gscBsiUtilGetCardProperties()

· gscBsiGcDataCreate()

· gscBsiGcDataDelete()

· gscBsiGcGetContainerProperties()

· gscBsiGcReadTagList()

· gscBsiGcReadValue()

· gscBsiGcUpdateValue()

· gscBsiGetChallenge()

· gscBsiSkiInternalAuthenticate()

· gscBsiPkiCompute()

· gscBsiPkiGetCertificate()

· gscBsiGetCryptoProperties()

Extensions to the BSI, in the form of an XSI (see Section 2.3), may be present in an implementation to allow additional functionality. The functions in an XSI shall not alter the specified behavior or semantics of the BSI functions in that implementation.

ACRs for each provider module are defined in Chapter 3, Table 3-2, Table 3-3 and Table 3-4. Section 4.4 defines BSI return codes and Section 4.5 defines 23 functions of the BSI, using pseudo IDL.

4.2 Binary Data Encoding

BSI functions accept or return binary data, such as cryptograms. However, some of the BSI services may pass or get some ASCII or ASCII hexadecimal formatted data depending on the usage. In this case, each of the services involved must explicitly mention this and which of its parameter(s) is/are impacted.
4.3 Mandatory Cryptographic Algorithms

The following cryptographic algorithms and associated algorithm identifiers are mandatory for all GSC smart cards. These algorithm ID values are used as parameters at the BSI level.

· Algorithm Identifier “0x81”: DES3-ECB, with a double length key-size, 16 bytes.

· Algorithm Identifier “0xA3”: RSA_NO_PAD, the private key computation, Chinese Remainder.

· Algorithm Identifier “0x82”: DES3-CBC, with a double length key-size, 16 bytes.

4.4 BSI Return Codes

Table 4-1 lists all possible errors that BSI functions could return. For each function description (Sections 4.5.3 to 4.7.5), return codes are listed in order of precedence, except for the successful return with BSI_OK.
Table 4-1: BSI Return Codes

	Label
	Return Code
Hexadecimal Value
	Meaning

	BSI_OK
	0x00
	Execution completed successfully.

	BSI_ACCESS_DENIED
	0x01
	The applicable ACR was not fulfilled.

	BSI_ACR_NOT_AVAILABLE
	0x02
	The specified ACR is incorrect.

	BSI_BAD_AID
	0x03
	The specified Application Identifiers (AID) does not exist.

	BSI_BAD_ALGO_ID
	0x04
	The specified cryptographic algorithm is not available.

	BSI_BAD_AUTH
	0x05
	Invalid authentication data.

	BSI_BAD_HANDLE
	0x06
	The specified card handle is not available.

	BSI_BAD_PARAM
	0x07
	One or more of the specified parameters is incorrect.

	BSI_BAD_TAG
	0x08
	Invalid tag information.

	BSI_CARD_ABSENT
	0x09
	The smart card associated with the specified card handle is not present.

	BSI_CARD_REMOVED
	0x0A
	The smart card associated with the specified card handle has been removed.

	BSI_NO_SPSSERVICE
	0x0B
	The SPS does not provide the requested service.

	BSI_IO_ERROR
	0x0C
	Error encountered during input/output of the specified data.

	–
	0x0D
	RFU

	BSI_INSUFFICIENT_BUFFER
	0x0E
	The buffer allocated by the calling application is too small.

	BSI_NO_CARDSERVICE
	0x0F
	The smart card associated with the specified card handle does not provide the requested service.

	BSI_NO_MORE_SPACE
	0x10
	There is insufficient space in the selected container to store the specified data.

	BSI_PIN_BLOCKED
	0x11
	The PIN is blocked.

	–
	0x012
	RFU

	BSI_TAG_EXISTS
	0x13
	The tag specified for a create operation already exists in the target container.

	BSI_TIMEOUT_ERROR
	0x14
	A connection could not be established with the smart card before the timeout value expired.

	BSI_TERMINAL_AUTH
	0x15
	The card reader has performed a successful authentication exchange with the smart card.

	BSI_NO_TEXT_AVAILABLE
	0x16
	No extended error text is available.

	BSI_UNKNOWN_ERROR
	0x17
	The requested operation has generated an unspecified error.

	BSI_UNKNOWN_READER
	0x18
	The specified reader does not exist.

	BSI_SC_LOCKED
	0x19
	The smart card associated with the specified card handle is under the exclusive transaction of another client application (see blocking mode in Section 4.5.6)

	BSI_NOT_TRANSACTED
	0x20
	The current transaction has not ended.

4.5 Smart Card Utility Provider Module Interface Definition

Section 4.5.1 presents the pseudo IDL used to define the 23 functions of the BSI services.

4.5.1 Pseudo IDL Definition

Using a modified Backus-Naur notation, a definition for the pseudo IDL is presented as follows:
BSI_IDL_Definition: (BSI_Function_Unit, …)

BSI_Function_Unit:(

Function_Prototype:

(

 [Return_Type],
// See below for possible values

 Function_Name,

 [Parameters*: (

 Way: {“IN” | “OUT” | “INOUT”},

 Parameter_Type, // See below for possible values

 Parameter_Name

)

]

)

(Return_Type | Paramater_Type) : Type

Type: “unsigned long”

| “string”

| “boolean”

| “short”

| “sequence” +<Type> // represent a sequence of element of type “Type”

| “GCacr”
 // structure

| “GCContainerSize” // structure

| “CRYPTOacr” // structure

| “BSIAuthenticator” // structure

| “BSIAcr”

 // structure
The types GCacr, GCContainerSize, CRYPTOacr and BSIAuthenticator are structure. The definition of a structure is as follows:

Struct_Definition: (Struct_Definition, …)
Struct_Definition: (

 “struct” structure_Name “{“

Struct_Parameters*:

 (

 Parameter_Type, // See above for possible values

 Parameter_Name

)

 “}”

)

4.5.2 Rules

A description of the symbols used is in Table 4-2.

Table 4-2: Description of Symbols

	Symbol
	Meaning

	:
	is composed of

	[]
	Optional element

	()
	Includes or included in

	,
	separates elements

	…
	Element repeats unspecified number of times

	{ }
	choose one from list

	|
	or, indicates choice of possibilities for element value

	+
	Element is combined with preceding element

	//
	remainder of line contains comments

	“”
	Contain a value

	*
	Number of elements is zero or several

Tables 4-3 and 4-4 are the pseudo IDL to Java and pseudo IDL to C mappings for the different types specified above:

Table 4-3: Mapping Pseudo IDL to Java

	IDL type
	Java type

	unsigned long
	int

	String
	byte[] or Java.lang.String (depending on the format : binary, ASCII or ASCII hex.)

	Boolean
	boolean

	octet (unsigned 8 bits type)
	Short

	sequence + <Type>
	<Type>[] or Vector of Type

	Gcacr
	Class Gcacr

	GCContainerSize
	Class GCContainerSize

	CRYPTOacr
	Class CRYPTOacr

	BSIAcr
	Class BSIAcr

Table 4-4: Mapping Pseudo IDL to C

	IDL type
	C type

	unsigned long
	unsigned long

	String
	unsigned char *

	Boolean
	boolean

	octet (unsigned 8 bits type)
	unsigned char

	sequence + <Type>
	<Type>[] (for byte see below)

	sequence<byte>
	unsigned char *

	Gcacr
	struct Gcacr

	Gctag
	unsigned char

	GCContainerSize
	struct GCContainerSize

	CRYPTOacr
	struct CRYPTOacr

	BSIAcr
	struct BSIAcr

	String (with n characters max, null terminated)
	char[n]

4.5.3 gscBsiUtilAcquireContext()

Purpose:
This function shall establish a session with a target container on the smart card by submitting the appropriate Authenticator in the BSIAuthenticator structure. For ACRs requiring external authentication (XAUTH), the authValue field of the BSIAuthenticator structure must contain a cryptogram calculated by encrypting a random challenge from gscBsiGetChallenge(). In cases where the card acceptance device authenticates the smart card, this function returns a BSI_TERMINAL_AUTH return code and the cryptogram is ignored.

For ACRs that require chained authentication such as BSI_ACR_PIN_AND_XAUTH, the calling application passes in the required authenticators in multiple BSIAuthenticator structures. In this example the calling application passes a PIN and the appropriate External Authentication cryptogram in two BSIAuthenticator structures. The client application must set the accessMethodType field of each BSIAuthenticator structure to match the type of authenticator contained in the structure. To satisfy an ACR of BSI_ACR_PIN_AND_XAUTH, the application would construct a sequence of two BSIAuthenticators: one containing a PIN and one containing an External Authentication cryptogram. The BSIAuthenticator structure containing the PIN would have an accessMethodType of BSI_AM_PIN, and the BSIAuthenticator structure containing the External Authentication cryptogram would have an accessMethodType of BSI_AM_XAUTH.
Prototype:
unsigned long gscBsiUtilAcquireContext(
IN unsigned long

hCard,
IN string

AID,

IN sequence<BSIAuthenticator> strctAuthenticator,
IN unsigned long

authNb

);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

strctAuthenticator:
A sequence of structures containing the authenticator(s) specified by the ACR required to access a value in the container. The required list of authenticators is returned by gscBsiGcGetContainerProperties(). The calling application is responsible for allocating this structure.

authNb:
Number of authenticator structures contained in strctAuthenticator.
The BSIAuthenticator structure is defined as follows:

struct BSIAuthenticator {

unsigned long
accessMethodType;

unsigned long
keyIDOrReference;

sequence<byte>
authValue;

};

Variables associated with the BSIAuthenticator structure:

accessMethodType:
Access Method Type (see Table 3-1 in Section 3.1).

keyIDOrReference:
Key identifier or reference of the authenticator. This is used to distinguish between multiple authenticators with the same Access Method Type.

authValue:
Authenticator, can be an external authentication cryptogram or PIN. If the authenticator value is NULL, then the SPS is in charge of gathering authentication information and authenticating to the card.
Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_ACR_NOT_AVAILABLE

BSI_BAD_AUTH

BSI_CARD_REMOVED

BSI_PIN_BLOCKED

BSI_UNKNOWN_ERROR

BSI_TERMINAL_AUTH
4.5.4 gscBsiUtilConnect()

Purpose:
Establish a logical connection with the smart card in a specified reader. BSI_TIMEOUT_ERROR will be returned if a connection cannot be established within a specified time. The timeout value is implementation dependent.

Prototype:
unsigned long gscBsiUtilConnect(
IN string
readerName,

OUT unsigned long
hCard

);

Parameters:
hCard:
Card connection handle.

readerName:
Name of the reader that the smart card is inserted into. If this field is a NULL pointer, the SPS shall attempt to connect to the smart card in the first available reader, as returned by a call to the BSI’s function gscBsiUtilGetReaderList(). The reader name string shall be stored as ASCII encoded String. (See Section 4.2)
Return Codes:
BSI_OK

BSI_BAD_PARAM

BSI_UNKNOWN_READER

BSI_CARD_ABSENT

BSI_TIMEOUT_ERROR

BSI_UNKNOWN_ERROR
4.5.5 gscBsiUtilDisconnect()

Purpose:
Terminate a logical connection to a smart card.
Prototype:
unsigned long gscBsiUtilDisconnect(
IN unsigned long
hCard

);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR
4.5.6 gscBsiUtilBeginTransaction()

Purpose:
This function starts an exclusive transaction with the smart card referenced by hCard. When the transaction starts, all other applications are blocked from accessing the smart card while the transaction is in progress. Two types of calls can be made: a blocking transaction call and a non-blocking transaction call, with a boolean type parameter identifying which mode is called. In the blocking mode, the call will return immediately if another client has an active transaction lock. The returned error code will be BSI_SC_LOCKED. In the non-blocking mode, the call will wait indefinitely for any active transaction locks to be released. A transaction must be completed by a call to gscBsiUtilEndTransaction().
For single-threaded BSI implementations, it can be assumed that each application will be associated with a separate process. The same process that starts a transaction must also complete the transaction. For multi-threaded BSI implementations, it can be assumed that each application will be associated with a separate thread and/or process. The same thread that starts a transaction must also complete the transaction.

If this function is called by a thread that has already called gscBsiUtilBeginTransaction() but has not yet called gscBsiUtilEndTransaction(), it will return the error BSI_NOT_TRANSACTED.

If the SPS (Service Provider Software) does not support transaction locking, it should return the error code BSI_NO_SPSSERVICE in response to a call to gscBsiUtilBeginTransaction().

Prototype:
unsigned long gscBsiUtilBeginTransaction(

IN unsigned long
hCard
IN boolean
blType
);

Parameters:
hCard:
Card communication handle returned from gscBsiUtilConnect()

blType:
Boolean specifying the type of transaction call (blType set to “true” in blocking mode. blType set to “false” in non-blocking mode).

Return Codes:
BSI_OK
BSI_BAD_HANDLE
BSI_UNKNOWN_ERROR

BSI_SC_LOCKED

BSI_NOT_TRANSACTED

BSI_NO_SPSSERVICE
4.5.7 gscBsiUtilEndTransaction()

Purpose:
This function ends a previsly started transaction, allowing other blocked applications to begin or resume interactions with the card.

If this function is called by a thread that has not yet called gscBsiUtilBeginTransaction(), it will return the error BSI_NOT_TRANSACTED.

If the SPS (Service Provider Software) does not support transaction locking, it should return the error code BSI_NO_SPSSERVICE in response to a call to gscBsiUtilEndTransaction().

Prototype:
unsigned long gscBsiUtilEndTransaction(
IN unsigned long
hCard
);

Parameters:
hCard:
Card communication handle returned from gscBsiUtilConnect().

Return Codes:
BSI_OK
BSI_BAD_HANDLE
BSI_UNKNOWN_ERROR

BSI_NOT_TRANSACTED

BSI_NO_SPSSERVICE
4.5.8 gscBsiUtilGetVersion()

Purpose:
Returns the BSI implementation version.
Prototype:
unsigned long gscBsiUtilGetVersion(
INOUT string
version

);

Parameters:
version:
The BSI and SPS version formatted as “major,minor,revision,build_number”. The value for an SPS conformant with this version of the GSC-IS is “2,1,0,<build number>”. The build number field is vendor/implementation dependent. The version name string shall be stored as ASCII encoded String. (See Section 4.2)

Return Codes:
BSI_OK

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR
4.5.9 gscBsiUtilGetCardProperties()

Purpose:
Retrieves ID and capability information for the smart card.

Prototype:
unsigned long gscBsiUtilGetCardProperties(
IN unsigned long
hCard,

INOUT sequence<byte>
CCCUniqueID,

OUT unsigned long
cardCapability
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
CCCUniqueID:
Buffer for the Card Capability Container ID.

cardCapability:
Bit mask value defining the providers supported by the smart card. The bit masks represent the Generic Container Data Model, the Symmetric Key Interface, and the Public Key Interface providers respectively:

#define BSI_GCCDM
0x00000001

#define BSI_SKI
0x00000002

#define BSI_PKI
0x00000004

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_CARD_REMOVED

BSI_INSUFFICIENT_BUFFER

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR

4.5.10 gscBsiUtilGetCardStatus()

Purpose:
Checks whether a given card handle is associated with a smart card that is inserted into a powered up reader.

Prototype:
unsigned long gscBsiUtilGetCardStatus(

IN unsigned long
hCard
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR

4.5.11 gscBsiUtilGetExtendedErrorText()

Purpose:
When a BSI function call returns an error, an application can make a subsequent call gscBsiUtilGetExtendedErrorTextto receive additional error information from the card reader driver layer, if available. Since the GSC-IS architecture accommodates different card reader driver layers, the error text information will be dependent on the card reader driver layer used in a particular implementation. This function must be called immediately after the error has occurred.

Prototype:
unsigned long gscBsiUtilGetExtendedErrorText(
IN unsigned long
hCard,

OUT string
errorText
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
errorText:
A fixed length buffer containing an implementation specific error text string. The text string has a maximum length of 255 characters. The calling application must allocate a buffer of 255 bytes. If an extended error text string is not available, this function returns a NULL string and the return code BSI_NO_TEXT_AVAILABLE. The error text string shall be stored as ASCII encoded String. (See Section 4.2)

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_NO_TEXT_AVAILABLE

BSI_UNKNOWN_ERROR

4.5.12 gscBsiUtilGetReaderList()

Purpose:
Retrieves the list of available readers.

Prototype:
unsigned long gscBsiUtilGetReaderList(
INOUT sequence<string>
readerList
);

Parameters:
readerList:
Reader list buffer. The reader list is returned as a multi-string. The list of available readers shall be stored as ASCII encoded String. (See Section 4.2)

Return Codes:
BSI_OK

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

4.5.13 gscBsiUtilPassthru()

Purpose:
Allows a client application to send a “raw” ISO 7816-4 [ISO4] APDU through the BSI directly to the smart card and receive the APDU-level response.

Prototype:
unsigned long gscBsiUtilPassthru(

IN unsigned long
hCard,

IN sequence<byte>
cardCommand,

INOUT sequence<byte>
cardResponse
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
cardCommand:
The APDU to be sent to the smart card. That parameter must be in ASCII hexadecimal format.

cardResponse:
Pre-allocated buffer for the APDU response from the smart card. The response must include the status bytes SW1 and SW2 returned by the smart card. If the size of the buffer is insufficient, the SPS shall return truncated response data and the return code BSI_INSUFFICIENT_BUFFER. That parameter must be in ASCII hexadecimal format.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_PARAM

BSI_INSUFFICIENT_BUFFER

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR

4.5.14 gscBsiUtilReleaseContext()

Purpose:
Terminate a session with the target container on the smart card.

Prototype:
unsigned long gscBsiUtilReleaseContext(
IN unsigned long
hCard,

IN sequence<byte>
AID
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

AID:
Target container AID value. The AID shall be stored as an ASCII hexadecimal string.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR

4.6 Smart Card Generic Container Provider Module Interface Definition

4.6.1 gscBsiGcDataCreate()

Purpose:
Create a new data item in {Tag, Length, Value} format in the selected container.

Prototype:
unsigned long gscBsiGcDataCreate(
IN unsigned long
hCard,

IN string
AID,

IN octet
tag,

IN sequence<byte>
value
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

tag:
Tag of data item to store.

dValue:
Data value to store.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_NO_MORE_SPACE

BSI_TAG_EXISTS

BSI_IO_ERROR

BSI_UNKNOWN_ERROR

4.6.2 gscBsiGcDataDelete()
Purpose:
Delete the data item associated with the tag value in the specified container.

Prototype:
unsigned long gscBsiGcDataDelete(
IN unsigned long
hCard,

IN string
AID,

IN octet
tag
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

AID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

tag:
Tag of data item to delete.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_TAG

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_IO_ERROR

BSI_UNKNOWN_ERROR

4.6.3 gscBsiGcGetContainerProperties()

Purpose:
Retrieves the properties of the specified container. Access Control Rules are common to all data items managed by the selected container.

Prototype:
unsigned long gscBsiGcGetContainerProperties(

IN unsigned long
hCard,

IN string
AID,

OUT GCacr
strctGCacr,

OUT GCContainerSize
strctContainerSizes,

OUT string
uszContainerVersion
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

strctGCacr:
Structure indicating access control conditions for all operations. The range of possible values for the members of this structure is defined in Table 3-2 (Section 3.1). The allowable ACRs for each function are listed in Table 3-3 (Section 3.2). keyIDOrReference contains the key identifier or reference for each access method contained in the ACR in order of appearance. authNb is the number of access methods logically combined in the ACR. ACRID is RFU and must be NULL (0x00).

struct GCacr {

BSIAcr
createACR;

BSIAcr
deleteACR;

BSIAcr
readTagListACR;

BSIAcr
readValueACR;

BSIAcr
updateValueACR;

};

struct BSIAcr {

unsigned long
ACRType;

unsigned long
keyIDOrReference[MaxNbAM];

unsigned long
AuthNb;

unsigned long
ACRID;

};

strctContainerSizes:
For Virtual Machine cards, the size (in bytes) of the container specified by AID. maxNbDataItems is the size of the T-Buffer, and maxValueStorageSize is the size of the V-Buffer. For file system cards than cannot calculate these values, both fields of this structure will be set to 0.

struct GCContainerSize {

unsigned long
maxNbDataItems;

unsigned long
maxValueStorageSize;

}

containerVersion:
Version of the container. The format of this value is application dependent. In cases where the smart card cannot return a container version, this sequence of byte will be empty.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR

4.6.4 gscBsiGcReadTagList()

Purpose:
Return the list of tags in the selected container.

Prototype:
unsigned long gscBsiGcReadTagList(
IN unsigned long

hCard,

IN string

AID,

INOUT sequence<octet>
tagArray
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

tagArray:
An array containing the list of tags for the selected container.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

4.6.5 gscBsiGcReadValue()

Purpose:
Returns the Value associated with the specified Tag.

Prototype:
unsigned long gscBsiGcReadValue(
IN unsigned long
hCard,

IN string
AID,

IN octet
tag,

INOUT sequence<byte>
dValue
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

tag:
Tag value of data item to read.

dValue:
Value associated with the specified tag. The caller must allocate the buffer.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_TAG

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_INSUFFICIENT_BUFFER

BSI_IO_ERROR

BSI_UNKNOWN_ERROR

4.6.6 gscBsiGcUpdateValue()

Purpose:
Updates the Value associated with the specified Tag.

Prototype:
unsigned long gscBsiGcUpdateValue(
IN unsigned long
hCard,

IN string
AID,

IN octet
tag,

IN sequence<byte>
dValue
);
Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

tag:
Tag of data item to update.

dValue:
New Value of the data item.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_TAG

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_NO_MORE_SPACE

BSI_IO_ERROR

BSI_UNKNOWN_ERROR

4.7 Smart Card Cryptographic Provider Module Interface Definition

4.7.1 gscBsiGetChallenge()

Purpose:
Retrieves a randomly generated challenge from the smart card as the first step of a challenge-response authentication protocol between the client application and the smart card. The client subsequently encrypts the challenge using a symmetric key and returns the encrypted random challenge to the smart card through a call to gscBsiUtilAcquireContext() in the authValue field of a BSIAuthenticator structure.

Prototype:
unsigned long gscBsiGetChallenge(
IN unsigned long
hCard,

IN string
AID,

INOUT sequence<byte>
challenge
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

challenge:
Random challenge returned from the smart card.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

4.7.2 gscBsiSkiInternalAuthenticate()

Purpose:
Computes a symmetric key cryptogram in response to a challenge. In cases where the card reader authenticates the smart card, this function does not return a cryptogram. In these cases a BSI_TERMINAL_AUTH will be returned if the card reader successfully authenticates the smart card. BSI_ACCESS_DENIED is returned if the card reader fails to authenticate the smart card.

Prototype:
unsigned long gscBsiSkiInternalAuthenticate(
IN unsigned long
hCard,

IN string
AID,

IN octet
aAlgoID,

IN sequence<byte>
challenge,

INOUT sequence<byte>
cryptogram
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
SKI provider module AID value. The parameter shall be in ASCII hexadecimal format.

algoID:
Identifies the cryptographic algorithm that the smart card must use to encrypt the challenge. All conformant implementations shall, at a minimum, support DES3-ECB (Algorithm Identifier 0x81) and DES3-CBC (Algorithm Identifier 0x82). Implementations may optionally support other cryptographic algorithms.

challenge:
Challenge generated by the client application and submitted to the smart card.

cryptogram:
The cryptogram computed by the smart card.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_ALGO_ID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_TERMINAL_AUTH

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

4.7.3 gscBsiPkiCompute()

Purpose:
Performs a private key computation on the message digest using the private key associated with the specified AID.

Prototype:
unsigned long gscBsiPkiCompute(
IN unsigned long
hCard,

IN string
AID,

IN octet
algoID,

IN sequence<byte>
message,

INOUT sequence<byte>
result
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
PKI provider module AID value. The parameter shall be in ASCII hexadecimal format.algoID:
Identifies the cryptographic algorithm that will be used to generate the signature. All conformant implementations shall, at a minimum, support RSA_NO_PAD (Algorithm Identifier 0xA3). Implementations may optionally support other algorithms.

message:
The message digest to be signed.

result:
Buffer containing the signature.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_ALGO_ID

BSI_CARD_REMOVED

BSI_ACCESS_DENIED

BSI_NO_CARDSERVICE

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

4.7.4 gscBsiPkiGetCertificate()

Purpose:
Reads the certificate from the smart card.

Prototype:
unsigned long gscBsiPkiGetCertificate(
IN unsigned long
hCard,

IN string
AID,

INOUT sequence<byte>
Certificate
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
PKI provider module AID value. The parameter shall be in ASCII hexadecimal format.

certificate:
Buffer containing the certificate.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_IO_ERROR

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

4.7.5 gscBsiGetCryptoProperties()

Purpose:
Retrieves the Access Control Rules associated with the PKI provider module.

Prototype:
unsigned long gscBsiGetCryptoProperties(
IN unsigned long
hCard,

IN string
AID,

OUT CRYPTOacr
strctCRYPTOacr,

OUT unsigned long
keyLen
);
Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
AID of the PKI provider. The parameter shall be in ASCII hexadecimal format.strctCRYPTOacr:
Structure indicating access control conditions for all operations. The BSIAcr structure is defined in Section 4.6.3. The range of possible values for the members of this structure are defined in Table 3-2 (Section 3.1), and the allowable ACRs for each function in Table 3-4 (Section 3.2). keyIDOrReference contains the key identifier or reference for each access method contained in the ACR in order of appearance. authNb is the number of access methods logically combined in the ACR. ACRID is RFU and must be NULL (0x00) in this version. Note that the readValueACR member maps to the gscBsiPkiGetCertificate() function.

struct CRYPTOacr {

BSIAcr
getChallengeACR;

BSIAcr
internalAuthenticateACR;

BSIAcr
pkiComputeACR;

BSIAcr
createACR;

BSIAcr
deleteACR;

BSIAcr
readTagListACR;

BSIAcr
readValueACR;

BSIAcr
updateValueACR;

};

keyLen:

Length of the private key managed by the PKI provider.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR

THIS PAGE INTENTIONALLY LEFT BLANK.

5. Virtual Card Edge Interface

The Virtual Card Edge Interface includes two sets of APDU commands: (1) an ISO 7816-4 [ISO4] and 7816-8 [ISO8] conformant GSC-IS APDU set for use in conformant file system (or VM smart cards), and (2) a set of VM APDUs for use in VM cards only. The card edge also consists of the CCC, which is a file located on each conformant smart card, and the GSC-IS APDU mapping mechanism.

The GSC-IS ISO-conformant APDU set can be implemented directly by conformant cards (such as in a conformant file system card or as a VM card applet). It is expected that some file system smart cards may use native APDU instruction sets that will differ from the GSC-IS APDU set. In those cases, an SPS must modify the ADPU set such that it conforms to the smart card’s native APDU set. This is done using the GSC-IS APDU mapping mechanism described in Section 5.2 and in Chapter 6.

Sections 5.1 through 5.3 describe the GSC-IS APDU set, overview information on the procedures for mapping this APDU set to smart card-specific APDU sets, and the APDUs for VM cards only. Chapter 6 provides details on the rules and procedures for APDU translations according to the CCC grammar.

5.1 GSC-IS ISO Conformant APDUs

Table 5-1 shows the GSC-IS APDU set for file system and VM cards. The APDUs are conformant with ISO 7816-4 [ISO4] and 7816-8 [ISO8], however some values have been defined for cryptogram lengths and cryptographic algorithm identifiers. Additional behavior for the APDUs would be described in a smart card’s CCC tuples using the descriptor code mechanisms. Support for secure messaging is not provided in this APDU set; as described in Section 3.3.3, secure messaging is implemented via the gscBsiUtilPassthru() mechanism in accordance with the Global Platform [GLOB] or ISO 7816-4 [ISO4].

Table 5-1: GSC-IS APDU Set

	GSC-IS APDU Set

	Generic File Access APDUs
	GET RESPONSE

	
	READ BINARY

	
	SELECT DF

	
	SELECT EF UNDER SELECTED DF

	
	SELECT FILE

	
	SELECT MASTER FILE (Root)

	
	UPDATE BINARY

	
	

	Access Control APDUs
	EXTERNAL AUTHENTICATE

	
	GET CHALLENGE

	
	INTERNAL AUTHENTICATE

	
	VERIFY

	
	

	Public Key Operations APDUs
	MANAGE SECURITY ENVIRONMENT

	
	PERFORM SECURITY OPERATION

The APDUs are divided into three categories: Generic File Access, Access Control, and Public Key Operations. The ADPU commands and responses are structured as follows:

Table 5-2: APDU Command and Response Structure

	Command APDU

	CLA
	INS
	P1
	P2
	Lc
	Data Field
	Le

	Response APDU

	Response
	SW1
	SW2

The terms described in Table 5-3 are used throughout this Section.

Table 5-3: APDU Command and Response Structure

	APDU Term
	Description

	CLA
	Class byte

	Data Field
	String of bytes sent in the data field of the command

	FC
	Function code, used in the CCC grammar to identify the default APDU that is being mapped (see Chapter 6 for detailed information)

	Lc
	Number of bytes present in data field of the command

	Le
	Maximum number of bytes expected in the data field of the response to the command

	INS
	Instruction byte; ISO 7816 defines a set of common commands, e.g., ‘B0’ is Read Binary

	P1-P2
	Instruction parameter 1 and 2

	Response
	String of bytes received in the data field of the response

	SW1
	Command processing status, i.e., the return code from the smart card

	SW2
	Command processing qualifier, supplies further information on SW1

5.1.1 Generic File Access APDUs

The APDUs in Table 5-4 are used to perform basic file access functions.

Table 5-4: Generic File Access APDUs

	Generic File Access APDUs

	FC
	Card Function
	CLA
	INS
	P1
	P2
	Lc
	Data
	Le

	0x07
	GET RESPONSE
	0x00
	0xC0
	0x00
	0x00
	–
	–
	Le

	0x02
	READ BINARY
	0x00
	0xB0
	Off/H
	Off/L
	–
	–
	Le

	0x01
	SELECT DF
	0x00
	0xA4
	0x01
	0x00 or 0x0C
	0x02
	File ID (2 bytes)
	–

	0x0D
	SELECT EF FILE UNDER SELECTED DF
	0x00
	0xA4
	0x02
	0x00 or 0x0C
	0x02
	File ID (2 bytes)
	–

	0x0C
	SELECT FILE
	0x00
	0xA4
	0x00-0x03
	 0x00 or 0x0C
	0x02
	File ID (2 bytes)
	–

	0x0E
	SELECT MASTER FILE (Root)
	0x00
	0xA4
	0x03
	0x00 or 0x0C
	0x02
	File ID (2 bytes)
	–

	0x03
	UPDATE BINARY
	0x00
	0xD6
	Off/H
	Off/L
	Lc
	Data to Update
	–

GET RESPONSE APDU

This APDU is used to read smart card results available from the completion of the previously executed APDU. GET RESPONSE is usually used to read extended results.

Command Message

	Function Code
	0x07

	CLA
	0x00

	INS
	0xC0

	P1
	0x00

	P2
	0x00

	Lc
	Empty

	Data Field
	Empty

	Le
	Number of bytes to read in response

Response Message

Data Field returned in the Response Message

If the APDU result indicates success, Le number of bytes will be available to read from the smart card.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	61
	XX
	Normal processing, XX still available to read with subsequent Get Response

	62
	81
	Part of returned data may be corrupted

	67
	00
	Wrong length (incorrect Le field)

	6A
	86
	Incorrect parameters P1-P2

	6C
	XX
	Wrong length (wrong Le field; XX indicates the exact length)

	90
	00
	Correct execution

5.1.1.1 READ BINARY APDU

This APDU is used to read the currently selected transparent file. All access control operations necessary for reading the file must be completed before using this APDU.

Command Message

	Function Code
	0x02

	CLA
	0x00

	INS
	0xB0

	P1
	High-order byte of 2-byte offset

	P2
	Low-order byte of 2-byte offset

	Lc
	Empty

	Data Field
	Empty

	Le
	Number of bytes to read

Response Message

Data Field returned in the Response Message

Le number of bytes followed by the two-byte processing state.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	62
	81
	Part of returned data may be corrupted

	62
	82
	End of file reached before reading Le bytes

	67
	00
	Wrong length (wrong Le field)

	69
	81
	Command incompatible with file structure

	69
	82
	Security status not satisfied

	69
	86
	Command not allowed (no current EF)

	6A
	81
	Function not supported

	6A
	82
	File not found

	6B
	00
	Wrong parameters (offset outside the EF)

	6C
	XX
	Wrong length (wrong Le field; XX indicates the exact length

	90
	00
	Correct execution

SELECT DF APDU

This APDU selects a child Dedicated File (DF) under the currently selected DF.

Command Message

	Function Code
	0x01

	CLA
	0x00

	INS
	0xA4

	P1
	0x01 - Select child DF of current DF

	P2
	0x00 for response required, 0x0C for no response required

	Lc
	0x02

	Data Field
	2-byte File Identifier

	Le
	Empty

Response Message

Data Field returned in the Response Message

If P2 is set to 0x00, data is returned as per ISO 7816-4 [ISO4]. If P2 is set to 0x0C, no data is returned.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	62
	83
	Selected file deactivated

	62
	84
	File control information not formatted according to ISO 7816-4 Section 5.1.5.

	6A
	81
	Function not supported

	6A
	82
	File not found

	6A
	86
	Incorrect parameters P1-P2

	6A
	87
	Lc inconsistent with P1-P2

	90
	00
	Correct execution

5.1.1.2 SELECT EF UNDER SELECTED DF APDU

This APDU selects an Elementary File under the currently selected DF.

Command Message

	Function Code
	0x0D

	CLA
	0x00

	INS
	0xA4

	P1
	0x02 - Select child EF of current DF

	P2
	0x00 for response required, 0x0C for no response required

	Lc
	0x02

	Data Field
	2-byte File Identifier

	Le
	Empty

Response Message

Data Field returned in the Response Message

If P0 is set to 0x00, data is returned as per ISO 7816-4 [ISO4]. If P1 is set to 0x0C, no data is returned.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	62
	83
	Selected file deactivated

	62
	84
	File control information not formatted according to ISO 7816-4, Section 5.1.5

	6A
	81
	Function not supported

	6A
	82
	File not found

	6A
	86
	Incorrect parameters P1-P2

	6A
	87
	Lc inconsistent with P1-P2

	90
	00
	Correct execution

SELECT FILE APDU

This APDU works as described in ISO 7816-4 [ISO4] to select the master file, a DF, or an EF.

Command Message

	Function Code
	0x0C

	CLA
	0x00

	INS
	0xA4

	P1
	See below

	P2
	0x00 for response required, 0x0C for no response required

	Lc
	Number of bytes in File Identifier, i.e., 2

	Data Field
	File Identifier

	Le
	Empty

P1:

0x00
Explicit selection with Data Field; Data field must contain

a valid File Identifier

0x01
Select child DF of current DF; Data Field must contain

a valid File Identifier

0x02
Select child EF of current DF; Data Field must contain

a valid File Identifier

0x03
Select parent DF of current DF; empty Data Field

Response Message

Data Field returned in the Response Message

If P2 is set to 0x00, data is returned as per ISO 7816-4 [ISO4]. If P2 is set to 0x0C, no data is returned.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	62
	83
	Selected file deactivated

	62
	84
	FCI not formatted according to ISO 7816-4 Section 5.1.5

	6A
	81
	Function not supported

	6A
	82
	File not found

	6A
	86
	Incorrect parameters P1-P2

	6A
	87
	Lc inconsistent with P1-P2

	90
	00
	Correct execution

SELECT MASTER FILE APDU

This APDU selects the Master File or the root of a file system card directory structure.

Command Message

	Function Code
	0x0E

	CLA
	0x00

	INS
	0xA4

	P1
	0x03 - Select MF

	P2
	0x00 for response required, 0x0C for no response required

	Lc
	0x02

	Data Field
	File Identifier

	Le
	Empty

Response Message

Data Field returned in the Response Message

If P2 is set to 0x00, data is returned as per ISO 7816-4 [ISO4]. If P2 is set to 0x0C, no data is returned.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	62
	83
	Selected file deactivated

	62
	84
	FCI not formatted according to ISO 7816-4 Section 5.1.5

	6A
	81
	Function not supported

	6A
	82
	File not found

	6A
	86
	Incorrect parameters P1-P2

	6A
	87
	Lc inconsistent with P1-P2

	90
	00
	Correct execution

UPDATE BINARY APDU

This APDU is used to update the currently selected transparent file. All access control operations necessary for writing to the selected file must be completed before using this APDU.

Command Message

	Function Code
	0x03

	CLA
	0x00

	INS
	0xD6

	P1
	High-order byte of 2-byte offset

	P2
	Low-order byte of 2-byte offset

	Lc
	Number of bytes to update

	Data Field
	Data to update

	Le
	Empty

Response Message

Data Field returned in the Response Message

Empty.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	63
	CX
	Successful updating after X retries, X=0 means no counter provided

	65
	81
	Memory failure (unsuccessful updating)

	67
	00
	Wrong length (wrong Lc field)

	69
	81
	Command incompatible with file structure

	69
	82
	Security status not satisfied

	69
	86
	Command not allowed (no current EF)

	6A
	81
	Function not supported

	6A
	82
	File not found

	6B
	00
	Wrong parameters (offset outside the EF)

	90
	00
	Correct execution

5.1.2 Access Control APDUs

Table 5-5 shows the Access Control APDU set for file system and VM cards. The Access Control APDUs assume that the default cryptographic algorithm is DES3-ECB, with a double length key-size, 16 bytes.

Table 5-5: Access Control APDUs

	Access Control APDUs

	FC
	Card Function
	CLA
	INS
	P1
	P2
	Lc
	Data
	Le

	0x0A
	EXTERNAL AUTHENTICATE
	0x00
	0x82
	AlgID
	Key #
	0x08
	8-byte cryptogram
	–

	0x05
	GET CHALLENGE
	0x00
	0x84
	0x00
	0x00
	–
	–
	0x08

	0x09
	INTERNAL AUTHENTICATE
	0x00
	0x88
	AlgID
	Key #
	0x08
	8-byte challenge
	0x08

	0x08
	VERIFY
	0x00
	0x20
	0x00
	CHV
	0x08
	Authentication data
	–

Various smart cards perform external and internal authentication in similar but slightly different ways. The general methods used by the default GSC-IS APDU set are described below. To change the syntax and behavior of the default APDUs, the appropriate descriptor codes can be used in conjunction with command and response code tuples in the CCC as described in Chapter 6.

External Authentication Method:

1. The client application and the smart card share a secret key; the smart card may store the key in a key file.

2. The SPS instructs the smart card to issue an 8-byte challenge via the GET CHALLENGE APDU; the smart card returns the challenge to the SPS.

3. The client application encrypts the challenge with its secret key to produce a cryptogram.

4. The SPS sends the cryptogram to the smart card and possibly the key number via the EXTERNAL AUTHENTICATE APDU.

5. The smart card accesses the specified secret key, its saved copy of the challenge, and computes the same cryptogram and returns a status code to the SPS.

6. If the status code indicates that the cryptograms match, external authentication is successful.

Internal Authentication Method:

Step 1: PIN authentication

1. The client application and the smart card share a PIN; the smart card may store the PIN in a PIN file.

2. The SPS sends the PIN and the PIN number to the smart card via the VERIFY APDU.

3. The smart card accesses the specified PIN, compares it to the client application’s PIN, and returns a status code to the SPS.

4. If the status code indicates that the PINs match, the smart card will permit the internal authentication to proceed.

Step 2: Internal Authentication

5. The client application and the smart card share a secret key; the smart card may store the key in a key file.

6. The client application computes an 8-byte challenge and sends this to the smart card along with the key number via the INTERNAL AUTHENTICATION APDU.

7. The smart card accesses the specified secret key, the challenge, and computes the same cryptogram.

8. The SPS retrieves the cryptogram in the response to the INTERNAL AUTHENTICATION APDU.

9. If the cryptograms match, internal authentication is successful.

Algorithm Identifiers for EXTERNAL and INTERNAL AUTHENTICATE APDUs:

ISO 7816-4 [ISO4] does not define algorithm identifiers for EXTERNAL and INTERNAL AUTHENTICATE, therefore this specification defines them in Table 5‑6. If a smart card does not use the algorithm identifiers defined in Table 5-6, then the appropriate definitions of the EXTERNAL and INTERNAL AUTHENTICATE APDUs in the CCC command tuples will be required. If the smart card supports multiple cryptographic algorithms for this command, then successive tuples can be used to identify all the possible cryptographic algorithms and their corresponding P1 values.

Table 5‑6: Algorithm Identifiers for Authentication APDUs

	Algorithm Identifier
	Algorithm-Mode
	Key Length in Bits

	0x00
	 Triple DES-ECB
	128

	0x01
	Triple DES-CBC
	128

	0x02
	DES-ECB
	64

	0x03
	DES-CBC
	64

	0x04 to 0x0F
	RFU
	–

	0x10
	RSA
	512

	0x11
	RSA
	768

	0x12
	RSA
	1024

	0x13
	RSA
	2048

	0x14 to 0x1F
	RFU
	–

	0x20
	AES-ECB
	128

	0x21
	AES-CBC
	128

	0x22
	AES-ECB
	192

	0x23
	AES-CBC
	192

	0x24
	AES-ECB
	256

	0x25
	AES-CBC
	256

	0x26-0x2F
	RFU
	–

5.1.2.1 EXTERNAL AUTHENTICATE APDU

This APDU is used in conjunction with the GET CHALLENGE APDU to authenticate a client application to the smart card. GET CHALLENGE would be issued first to cause the smart card to issue a random number, i.e., the challenge. The client application would encrypt the challenge and send the resultant cryptogram to the smart card via the EXTERNAL AUTHENTICATE APDU. The smart card would then decrypt it using the same algorithm as the client application and compare it to its internally stored copy of the challenge. If the cryptograms match, the client application is authenticated to the smart card. If the cryptograms do not match, the challenge is no longer valid.

Command Message

	Function Code
	0x0A

	CLA
	0x00

	INS
	0x82

	P1
	Algorithm Identifier – see Table 5‑6

	P2
	0x00 for default key, 0x01 to 0x63 for key number

	Lc
	0x08

	Data Field
	8-byte cryptogram

	Le
	Empty

Response Message

Data Field returned in the Response Message

Empty.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	63
	00
	No information given (Authentication failed)

	63
	CX
	Authentication failed; X indicated number of further allowed retries

	67
	00
	Wrong length (the Lc field is incorrect)

	69
	83
	Authentication method blocked

	69
	84
	Referenced data deactivated

	69
	85
	Conditions of use not satisfied (the command is not allowed in this context)

	6A
	86
	Incorrect parameters P1-P2

	6A
	88
	Referenced data not found

	90
	00
	Correct execution

5.1.2.2 GET CHALLENGE APDU

This APDU is used to cause the smart card to generate a cryptographic challenge, e.g., a random number, for use in the subsequent security related procedure such as EXTERNAL AUTHENTICATE. The smart card saves a copy of the challenge internally until the completion of the security related procedure or if an error occurs.

The challenge is valid only for the next APDU in the same card session.

The length of the challenge is always 8 bytes.

Command Message

	Function Code
	0x05

	CLA
	0x00

	INS
	0x84

	P1
	0x00

	P2
	0x00

	Lc
	Empty

	Data Field
	Empty

	Le
	0x08

Response Message

Data Field returned in the Response Message

If the APDU result indicates success, Le number of bytes will be available to read from the smart card, i.e., the 8-byte challenge.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	6A
	81
	Function not supported

	6A
	86
	Incorrect parameters P1-P2

	90
	00
	Correct execution

5.1.2.3 INTERNAL AUTHENTICATE APDU

This APDU is used to authenticate the smart card to the client application. An 8-byte challenge is computed by the client application and then passed to the smart card via this command. Also passed are a key number and the cryptographic algorithm the smart card uses when encrypting the challenge. The smart card takes this information and encrypts the challenge according to the algorithm specified and the specified key and returns the resultant cryptogram. If the decrypted cryptogram from the smart card matches the initial challenge computed by the client application, the smart card is authenticated to the client application.

Command Message

	Function Code
	0x09

	CLA
	0x00

	INS
	0x88

	P1
	Algorithm Identifier – see Table 5-6

	P2
	0x00 for default key, 0x01 to 0x63 for key number

	Lc
	0x08

	Data Field
	8-byte challenge

	Le
	0x08

Response Message

Data Field returned in the Response Message

The 8-byte cryptogram.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	69
	84
	Referenced data deactivated

	69
	85
	Conditions of use not satisfied

	6A
	86
	Incorrect parameters P1-P2

	6A
	88
	Reference data not found

	90
	00
	Correct execution

5.1.2.4 VERIFY APDU

This APDU is used to compare authentication data such as a password, key or PIN with corresponding authentication data on the smart card. The SPS sends the authentication data in this APDU and directs the smart card to compare it with authentication data on the smart card. The authentication data is passed unencrypted.

Command Message

	Function Code
	0x08

	CLA
	0x00

	INS
	0x20

	P1
	0x00

	P2
	0x00 for default key, 0x01 to 0x63 for key number

	Lc
	0x08

	Data Field
	8-byte authentication data (i.e., password or PIN)

	Le
	Empty

Note: If Lc, Data Field, and Le are empty, VERIFY can be used either to retrieve the number X of further allowed retries (SW=63CX) or to check whether the verification is not needed (SW=9000).
Response Message

Data Field returned in the Response Message

Empty.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	63
	00
	Verification failed

	63
	CX
	Verification failed, X indicates the number of further allowed retries

	69
	83
	Authentication method blocked

	69
	84
	Referenced data deactivated

	6A
	86
	Incorrect parameters P1-P2

	6A
	88
	Reference data not found

	90
	00
	Correct execution

5.1.3 Public Key Operations APDUs

Table 5-7 shows the public key operations APDUs for file system and VM cards. The default padding scheme for RSA is assumed to be RSA_NO_PAD. The computation is performed with the private key.

Table 5-7: Public Key Operations APDUs

	Public Key Operations APDU

	FC
	Card Function
	CLA
	INS
	P1
	P2
	Lc
	Data
	Le

	0x05
	MANAGE SECURITY ENVIRONMENT
	0x00
	0x22
	0x41
	0xB6
	Lc
	Key Reference information
	–

	0x0B
	PERFORM SECURITY OPERATION
	0x00
	0x2A
	0x9E
	0x9A
	Lc
	Message to sign/decrypt
	Le

5.1.3.1 MANAGE SECURITY ENVIRONMENT APDU

This APDU is used to initiate the computation of a digital signature on a message by setting a digital signature template to be used by a subsequent PERFORM SECURITY OPERATION APDU.

Command Message

	Function Code
	0x05

	CLA
	0x00

	INS
	0x22

	P1
	0x41

	P2
	0xB6

	Lc
	Lc

	Data Field
	Key Reference information

	Le
	Empty

Data Field:
Key reference information, formatted as per ISO 7816-8 [ISO8].

Response Message

Data Field returned in the Response Message

Empty.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	66
	00
	The Security Environment cannot be set

	67
	00
	Wrong length (the Lc field incorrect)

	6A
	80
	Invalid or missing tag, length or value in a Control Reference Data Object (CRDO)

	6A
	86
	Incorrect parameters P1-P2

	90
	00
	Correct execution

5.1.3.2 PERFORM SECURITY OPERATION APDU

This APDU is used to initiate the computation of a digital signature on a message. This APDU responds with the computed signature or decrypted message.

Command Message

	Function Code
	0x0B

	CLA
	0x00

	INS
	0x2A

	P1
	0x9E

	P2
	0x9A

	Lc
	Length in bytes of message

	Data Field
	Message to sign or decrypt

	Le
	Length of response

Response Message

Data Field returned in the Response Message

The signed or decrypted message.

Processing State returned in the Response Message

	SW1
	SW2
	Meaning

	67
	00
	Wrong length (the Lc field is incorrect)

	69
	81
	Invalid file type

	69
	85
	No preceding MSE-Set or previously specified key file is missing

	69
	87
	Missing Secure Messaging Data Object

	69
	88
	Incorrect Secure Message Data Object

	6A
	86
	Incorrect parameters P1-P2

	90
	00
	Correct execution

	6C
	XX
	Wrong length (wrong Le field; XX indicates the exact length)

Mapping Default APDUs to Native APDU Sets

For file system cards that contain a native APDU instruction set that differs from the GSC-IS default set, the SPS must implement a mapping mechanism to translate the default APDUs into the native APDUs in accordance with the information obtained from the CCC.

5.2.1 The CCC Command and Response Tuples

The CCC is a file that must be present on each conformant GSC-IS smart card. The CCC includes a set of tuples, which are 2-byte values that describe the differences in syntax between a file system card’s native APDU set and the GSC-IS APDU set. Chapter 6 describes the contents of the CCC in more detail. Besides syntactical differences, the tuples also describe differences in APDU execution and data format. The codes used in the tuples to describe these differences are called Descriptor Codes.

As an example, Descriptor Codes can be used to indicate that a smart card’s native READ BINARY APDU requires that offsets be on word boundaries as opposed to byte boundaries. Or, a smart card’s native EXTERNAL AUTHENTICATE APDU may require 4 bytes of a cryptographic challenge whereas the default APDU requires 8 bytes. A descriptor code can be used to indicate that the SPS must build and send an APDU using a 4-byte cryptographic challenge.

A smart card with a native APDU instruction set identical to the GSC-IS default APDU set would still contain a CCC, however the CCC may contain no tuples (and descriptor codes), since no APDU mapping would be necessary.

5.2.2 Native APDU Mapping and CCC Grammar

Each conformant SPS for file system cards must implement the translation or mapping mechanism to translate the default GSC-IS APDU set into a smart card’s native APDU set both in syntax and in operation. The SPS performs this translation according to the rules of a CCC grammar associated with the set of tuples located in the smart card’s CCC, described in more detail in Chapter 6.

The card edge interface for file system cards operates as follows:

7. A smart card vendor creates a CCC and loads it onto a smart card.

8. The SPS has knowledge of the default GSC-IS APDUs and how to translate them into a conformant card’s native APDU set using the CCC grammar.

9. The smart card, when ready for use, is inserted into a reader.

10. The SPS’s card edge locates and reads the contents of the CCC.

11. The SPS’s card edge maps the default APDU set into the card’s native set using the tuples in the CCC and the associated CCC grammar.

12. The SPS, when sending APDUs to the smart card, then uses the smart card’s native ADPU set according to its rules of operation.

5.2.3 Detecting Card APDUs

The SPS can detect which of the default GSC-IS APDUs are available on a smart card according to the following rules:

13. If the APDU is defined in a capability tuple as not implemented (via Descriptor Code 0xFE, see Table 6-10), then the APDU is not available.

14. If the APDU is defined otherwise in one or more capability tuples, the APDU is available as defined.

15. If the APDU is not defined in any capability tuple, the APDU is assumed to be available and operates as described in this specification and in ISO 7816-4 [ISO4] and 7816-8 [ISO8].

The CCC optionally may contain a six-byte CARD APDUs bit-string for the purposes of informing the SPS which ISO 7816-4 [ISO4] and 7816-8 [ISO8] APDUs are available on the smart card. Each bit in the string, if set to 1, would indicate the presence of a corresponding APDU; a ‘0’ would indicate the corresponding APDU is not present or is not to be used. The CARD APDUs string does not override any command tuples; however, if an APDU is described in command tuples but not in the CARD APDUs field, the command tuples are to be used. Table 5-8 shows bit positions and corresponding APDUs.

Table 5-8: CARD APDUs Values

	Bit Position
	7816-4 APDU

	0
	Select File

	1
	Manage Channel

	2
	Read Binary

	3
	Write Binary

	4
	Update Binary

	5
	Search Binary

	6
	Erase Binary

	7
	Read Record

	8
	Write Record

	9
	Update Record

	10
	Append Record

	11
	Search Record

	12
	Erase Record

	13
	Get Data

	14
	Put Data

	15
	Internal Authenticate

	16
	Get Challenge

	17
	External Authenticate

	18
	Mutual Authenticate

	19
	General Authenticate

	20
	Verify

	21
	Change Reference Data

	22
	Enable Verification Requirement

	23
	Disable Verification Requirement

	
	

	24
	Reset Retry Counter

	25
	Manage Security Environment

	26
	Get Response

	27
	Envelope

	28
	Perform Security Operation

	29-47
	RFU

5.2.4 Default Status Code Responses

The default APDUs return status codes according to ISO 7816-4 [ISO4]. Non-ISO card-specific status codes can be mapped into a GSC-IS set of status code responses, shown in Table 5-9. As described in Chapter 6, the status codes can be mapped using the CCC grammar and status code tuples.

Table 5-9: GSC-IS Status Code Responses

	Status Conditions

	0x00
	Successful Completion

	0x01
	Successful Completion – Warning 1

	0x02
	Successful Completion – Warning 2

	0x03
	Reserved

	0x04
	Reserved

	0x05
	Reserved

	0x06
	Reserved

	0x07
	Reserved

	0x08
	Access Condition not Satisfied

	0x09
	Function not Allowed

	0x0A
	Inconsistent Parameter

	0x0B
	Data Error

	0x0C
	Wrong Length

	0x0D
	Function not compatible with file structure

	0x0E
	File/Record not Found

	0x0F
	Function Not Supported

5.2 Card Edge Interface for VM Cards

The Card Edge Interface for VM Cards is made up of provider modules that provide three classes of services: generic container management services, symmetric key cryptographic services, and public (asymmetric) key cryptographic services. Each provider module may provide one or more class of service. These provider modules are implemented as on-card applets. For virtual machine cards, the terms “provider” and “applet” are synonymous.

Common interface methods that must be implemented by all providers are described first, and the methods unique to each provider class are described in subsequent sections. Table 5-10 provides a summary of the APDUs implemented for the virtual machine card edge.

Table 5-10: Virtual Machine Card Edge APDUs

	Virtual Machine APDU Set

	Common Interface Methods VM APDUs
	SELECT APPLET

	
	SELECT OBJECT

	
	GET PROPERTIES

	
	GET ACR

	
	GET RESPONSE

	
	VERIFY PIN

	
	

	Generic Container Provider VM APDUs
	READ BUFFER

	
	UPDATE BUFFER

	
	

	Symmetric Key Provider VM APDUs
	GET CHALLNGE

	
	EXTERNAL AUTHENTICATE

	
	INTERNAL AUTHENTICATE

	
	

	Public Key Provider VM APDUs
	PRIVATE SIGN/DECRYPT

5.3.1 Virtual Machine Card Access Control Rule Configuration

Each smart card service provider shall present its services through a set of APDUs implemented and managed by the provider. The ACRs associated with card level services vary depending on the application.

ACRs shall be coded as a single byte value (range 0x00 - 0xFF) as defined in Table 3-2.

5.3.2 Virtual Machine Card Edge General Error Conditions

Tables 5-11a and 5-11b apply to all virtual machine card edge APDUs:

Table 5-11a: Successful Conditions

	Status bytes SW1 SW2
	Meaning

	61 LL
	SW2 indicates the number of response bytes available

	90 00
	Normal ending of the command

Table 5-11b: General Error Conditions

	Status bytes SW1 SW2
	Meaning

	62 00
	Applet or instance logically deleted

	63CX
	Authentication failed, X indicates the remaining tries

	65 81
	Memory failure

	67 00
	Incorrect parameter Lc

	6C XX
	Wrong length in Le parameter, SW2 indicates the exact length

	69 82
	Security status not satisfied

	69 83
	Authentication method blocked (ie. PIN code blocked)

	69 85
	Conditions of use not satisfied

	69 99
	Applet select failed (not ISO but JavaCard)

	6A 80
	Invalid parameters in command Data Field

	6A 82
	Applet or file not found

	6A 84
	Insufficient memory space to complete command

	6A 86
	Incorrect P1 or P2 parameter

	6A 88
	Referenced data not found

	6D 00
	Unknown instruction given in the command

	6E 00
	Wrong class given in the command

	6F 00
	Technical problem with no diagnostic given

5.3.3 Common Interface Methods Virtual Machine Card Edge Interface

The Common Interface Methods Vitual Machine APDUs, as shown in Table 5-12, are implemented by all applets.

Table 5-12: Common Interface Methods VM APDUs

	Card Function
	CLA
	INS
	P1
	P2
	Lc
	Data
	Le

	SELECT APPLET
	0x00
	0xA4
	0x04
	0x00
	Lc
	AID
	–

	SELECT OBJECT
	0x00
	0xA4
	0x02
	 0x00
	Lc
	File ID
	–

	GET PROPERTIES
	0x00
	0x56
	P1
	0x00
	Lc
	Requested Tags
	–

	GET ACR
	0x80
	0x4C
	P1
	0x00
	Lc
	AID or Object ID
	–

	GET RESPONSE
	0x00
	0xC0
	0x00
	0x00
	–
	–
	Lc

	VERIFY PIN
	0x00
	0x20
	0x00
	0x00
	Lc
	PIN
	–

5.3.3.1 Access Control

A fixed set of Access Control Rules are assigned to the Common Interface Methods Virtual Machine Card Edge Interface APDU commands as defined in Table 5-13:

Table 5-13: ACRs assigned to the Common Interface Methods VM CEI

	APDU
	ACR

	Get Properties
	BSI_ACR_ALWAYS

	Get ACR
	BSI_ACR_ALWAYS

	Get Challenge
	BSI_ACR_ALWAYS

	External Authenticate
	BSI_ACR_ALWAYS

	Verify PIN
	BSI_ACR_ALWAYS

5.3.3.2 SELECT APPLET APDU

This command is similar to the ISO 7816-4 [ISO4] command SELECT FILE by Application Identifier. The command is used to select the instance of an applet using its AID.

Command Message

	CLA
	0x00

	INS
	0xA4

	P1
	0x04

	P2
	0x00

	Lc
	Length of the applet AID

	Data Field
	Applet AID (between 5 and 16 bytes in length).

	Le
	Empty

Response Message

Data field returned in the response message

Empty.

Processing state returned in the response message

If the applet is not found on the smart card, the ISO 7816-4 [ISO4] status condition: ‘6A82’ is returned (status bytes SW1,SW2=0x6A,0x82). For other status conditions see section General Error Conditions in Section 5.3.2.

5.3.3.3 SELECT OBJECT APDU

This command is similar to the ISO 7816-4 [ISO4] command SELECT FILE. The command is used to select a container managed by an applet.

Command Message

	CLA
	0x00

	INS
	0xA4

	P1
	0x02

	P2
	0x00

	Lc
	Length of the object AID

	Data Field
	Object AID (between 2 and 16 bytes in length).

	Le
	Empty

Response Message

Data field returned in the response message

Empty.

Status bytes returned in the response message

If the object is not found on the smart card, the ISO 7816-4 [ISO4] status condition: ‘6A82’ is returned (status bytes SW1=0x6A, SW2=0x82). For other status conditions see section General Error Conditions in Section 5.3.2.

5.3.3.4 GET PROPERTIES APDU

This command is used to retrieve applet instance properties of a currently selected applet.

Command Message

	CLA
	0x80

	INS
	0x56

	P1
	Requested properties information type

	P2
	0x00

	Lc
	If P1=0x02 then length of list of requested tags, else empty.

	Data Field
	If P1=0x02 then list of requested tags, else empty.

	Le
	Expected applet instance properties length

Reference control parameter P1

The reference control parameter P1 shall be used to indicate the type of requested properties information. The following P1 values are possible:

0x00: Get a GSC-IS v2.0 compatible properties response message. If this response cannot be supported by the smart card then an error (0x6A86) shall be returned.

0x01: Get all the properties.

0x02: Get the properties of the tags provided in list of tags in the command data field.

Data field sent in the command message

This field is present only when P1 is 0x02. In that case, this data field is composed of the list of tags to be requested from the applet instance (the tag values, 1 byte each, are chained).

Response Message

Data field returned in the response message when P1 is 0x00

The Data field returned in the response message contains the values of the following properties:

· Applet family (1 byte)

· Applet version (4 bytes)

· Level1 access control/ Level2 access control (1 byte)

· Level3 access control/ RFU (1 byte)

· RFU byte

· RFU byte

· ID/CHV-applet AID length (1 byte)

· ID/CHV-applet AID (always 16 bytes padded with 0 if necessary) – AID of the ID/CHV applet instance that shall be used for Card Holder Verification (CHV)

· Key Set Version (1 byte)

· Key Set Id (1 byte)

· X bytes of applet specific information and RFU to complement to 64 bytes.

Data field returned in the response message when P1 is 0x01 or 0x02

The data field returned in the response message contains the current value of all the properties when P1 is 0x01 or the current value of the requested properties when P1 is 0x02. The properties are returned in a single buffer containing a list of TLVs packed end-to-end according to the table below

The tags returned in this response are card-edge specific (application independent) and should not be confused with the GSC and CAC data model tags.

	Tag
	Length
	Value

	0x00
	5
	Applet Information

	
	
	 Applet Family (1 byte)

	
	
	 Applet version (4 bytes)

	0x40
	1
	Number of objects managed by this instance

	0x50
	11
	First TV-Buffer Object

	0x41
	2
	 —ObjectID (2 bytes)

	0x42
	5
	 —Buffer Properties

	
	
	 Type of Tag Supported (1 byte)

	
	
	 T-Buffer length (2 bytes): LSB, MSB

	
	
	 V-Buffer length (2 bytes): LSB, MSB

	
	
	…

	0x50
	11
	Last TV-Buffer Object

	0x41
	2
	 —ObjectID (2 bytes)

	0x42
	5
	 —Buffer Properties

	
	
	 Type of Tag Supported (1 byte)

	
	
	 T-Buffer length (2 bytes): LSB, MSB

	
	
	 V-Buffer length (2 bytes): LSB, MSB

	0x51
	18
	First PKI Object

	0x41
	2
	 —ObjectID (2 bytes)

	0x42
	5
	 —Buffer Properties

	
	
	 Type of Tag Supported (1 byte)

	
	
	 T-Buffer length (2 bytes): LSB, MSB

	
	
	 V-Buffer length (2 bytes): LSB, MSB

	0x43
	5
	 —PKI Properties

	
	
	 Algorithm ID (1 byte)

	
	
	 Key Length Bytes / 8 (1024 bits -> 128 bytes-> 0x10) (1 byte)

	
	
	 Private Key Initialized (1 byte)

	
	
	 Public Key Initialized (1 byte)

	
	
	…

Processing state returned in the response message

If the properties retrieval succeeds, SW1 = 0x61 and SW2 = size of next block of data available to read.

If P1 = 0x00 cannot be supported by the smart card, SW1 = 0x6A and SW2 = 86.

	SW1
	SW2
	Meaning

	61
	LL
	More data available, 0xLL specifying the size of next block to read.

	6A
	86
	P1 or P2 parameter not supported.

For other status conditions see Table 5-11b.
5.3.3.4 GET ACR APDU

This command is used to retrieve Access Control Rule properties.

Command Message

	CLA
	0x80

	INS
	0x4C

	P1
	Reference Control Parameter P1

	P2
	0x00

	Lc
	If P1=0x00, 0x10, 0x20, or 0x21 then empty. If P1=0x01 then the length of the ACRID (0x01). If P1=0x11 then the length of the AID (<=0x10). If P1=0x12 then the length of object ID (0x02)

	Data Field
	If P1 = 0x00, 0x10, 0x20, 0x21 then empty. If P1=0x01 then the value of the ACRID. If P1=0x11 then the value of the AID. If P1=0x12 then the value of the object ID.

	Le
	Empty.

Reference control parameter P1

The reference control parameter P1 shall be used to indicate the type of requested ACR properties information. The following P1 values are possible:

0x00: All ACR table entries are to be extracted.

0x01: Only one entry of the ACR table is extracted based on ACRID.

0x10: All Applet/Object ACR table entries are to be extracted.

0x11: Only the entries of the Applet/Object ACR table for one applet are extracted based on applet AID.

0x12: Only one entry of the Applet/Object ACR table for an object is extracted based on object ID.

0x20: The Access Method Provider table is extracted.

0x21: The Service Applet table is extracted.

Data field sent in the command message

This field is present only when P1 is 0x11 or 0x12. If P1 equals 0x11, it contains the AID value of the applet for which the Applet/Object ACR table is to be extracted. If P2 equals 0x12, it contains the Object ID value of the object for which the Applet/Object ACR table is to be extracted.

Response Message

Data field returned in the response message

The following tables may be retrieved:

· ACR table: This table maps the Access Control Rule Type (ACRType) and Access Method information to the Access Control Rule Identifier (ACRID) for each Access Control Rule.

· Applet/Object ACR table: This table maps the service (INS code/P1 byte/P2 byte/1st data byte) to the ACRID for each container.

· Access Method Provider table: This table maps the Access Method Provider ID to the full AID for each Access Method Provider.

· Service Applet table: This table maps the Service Applet ID to the full AID for each Service Applet.

The data fields returned in the response message may contain all the entries for a table or only the requested ones depending on the command parameters.

The following entry is always returned and precedes any ACR table, Applet/Object ACR table or Authentication Method Provider table.

Table 5-14: Applet Information String
	Tag
	Length
	Value

	0x01
	5
	Applet Family of ACA (1 byte)

	
	
	 Applet version of ACA (4 bytes)

In addition to the common Applet Information entry the following entries are conditionally returned depending on the reference control parameter P1.

Data field returned in the response message when P1 is 0x00

The data field returned in the response message contains all the entries of the ACR table.

Table 5-15: ACR Table

	Tag
	Length
	Value

	0xA1
	1
	Number of ACR entries (unique ACRID)

	0xA0
	*
	First ACR entry (structured as follows)

	
	
	 ACRID of ACR entry (1 byte)

	
	
	 ACRType (as defined in Table 3-2) (1 byte)

	
	
	 Number of AccessMethods in this ACR (1 byte)

	
	
	 —First AccessMethodProviderID (1 byte)

	
	
	 —First keyIDOrReference (1 byte)

	
	
	…

	
	
	 —Last AccessMethodProviderID (1 byte)

	
	
	 —Last keyIDOrReference (1 byte)

	0xA0
	*
	Next ACR entry

	
	
	…

Data field returned in the response message when P1 is 0x01

The data field returned in the response message a single entry of the ACR table based on ACRID.

Table 5-16: Applet/Object ACR Table

	Tag
	Length
	Value

	0xA0
	*
	ACR entry corresponding to ACRID sent

	
	
	 ACRID of ACR entry (1 byte)

	
	
	 ACRType (as defined in Table 3-2) (1 byte)

	
	
	 Number of AccessMethods in this ACR (1 byte)

	
	
	 —First AccessMethodProviderID (1 byte)

	
	
	 —First keyIDOrReference (1 byte)

	
	
	…

	
	
	 —Last AccessMethodProviderID (1 byte)

	
	
	 —Last keyIDOrReference (1 byte)

Data field returned in the response message when P1 is 0x10

The data field returned in the response message contains all entries of the Applet/Object ACR table.

Table 5-17: Access Method Provider Table

	Tag
	Length
	Value

	0x81
	1
	Number of applets managed by this ACA

	0x80
	Length is 2 plus length of nested TLV fields 0x82
	Card Applet ACR structured as follows

	
	
	 Applet ID (1 byte)

	
	
	 Number of objects managed by this applet (1 byte)

	0x82
	*
	 —Card Object ACR structured as follows

	
	
	 Card Object ID (2 bytes)

	
	
	 INS1 Code (1 byte)

	
	
	 INS1 Configuration Definition - 0000 00b1b0(1 byte)

 If b0=1 then P1 byte is present.

 If b1=1 then P2 byte is present.

	
	
	 P1 Value – OPTIONAL (1 byte)

	
	
	 P2 Value – OPTIONAL (1 byte)

	
	
	 ACRID (1 byte)

	
	
	 INS2 code (1 byte)

	
	
	 INS2 Config Definition 0000 00b1b0(1 byte)

 If b0=1 then P1 byte is present.

 If b1=1 then P2 byte is present.

	
	
	 P1 Value – OPTIONAL (1 byte)

	
	
	 P2 Value – OPTIONAL (1 byte)

	
	
	 ACRID (1 byte)

	
	
	…

	0x82
	*
	 —Next Card Object ACR

	
	
	…

	0x80
	*
	Next Card Applet ACR

	
	
	…

Data field returned in the response message when P1 is 0x11

The data field returned in the response message contains the entries of the Applet/Object ACR table for a single applet based on AID.

Table 5-18: Service Applet Table

	Tag
	Length
	Value

	0x80
	Length is 2 plus length of nested TLV fields 0x82
	Applet ACR table based on applet AID entered

	
	
	 Applet ID (1 byte)

	
	
	 Number of objects managed by this applet (1 byte)

	0x82
	*
	 —Card Object ACR structured as follows

	
	
	 Card Object ID (2 bytes)

	
	
	 INS1 Code (1 byte)

	
	
	 INS1 Configuration Definition - 0000 00b1b0(1 byte)

 If b0=1 then P1 byte is present.

 If b1=1 then P2 byte is present.

	
	
	 P1 Value – OPTIONAL (1 byte)

	
	
	 P2 Value – OPTIONAL (1 byte)

	
	
	 ACRID (1 byte)

	
	
	 INS2 code (1 byte)

	
	
	 INS2 Config Definition 0000 00b1b0(1 byte)

 If b0=1 then P1 byte is present.

 If b1=1 then P2 byte is present.

	
	
	 P1 Value – OPTIONAL (1 byte)

	
	
	 P2 Value – OPTIONAL (1 byte)

	
	
	 ACRID (1 byte)

	
	
	…

	0x82
	*
	 —Next Card Object ACR

	
	
	…

Data field returned in the response message when P1 is 0x12

The data field returned in the response message contains the entry of the Applet/Object ACR table for a single object based on OID.

Table 5-19: Applet/Object ACR table for a Single Object

	Tag
	Length
	Value

	0x82
	*
	Card Object ACR (structured as follows)

	
	
	 Card Object ID (2 bytes)

	
	
	 INS1 Code (1 byte)

	
	
	 INS1 Configuration Definition - 0000 00b1b0(1 byte)

 If b0=1 then P1 byte is present.

 If b1=1 then P2 byte is present.

	
	
	 P1 Value – OPTIONAL (1 byte)

	
	
	 P2 Value – OPTIONAL (1 byte)

	
	
	 ACRID (1 byte)

	
	
	 INS2 code (1 byte)

	
	
	 INS2 Config Definition 0000 00b1b0(1 byte)

 If b0=1 then P1 byte is present.

 If b1=1 then P2 byte is present.

	
	
	 P1 Value – OPTIONAL (1 byte)

	
	
	 P2 Value – OPTIONAL (1 byte)

	
	
	 ACRID (1 byte)

	
	
	…

Data field returned in the response message when P1 is 0x20

The data field returned in the response message contains all the entries of the Access Method Provider table.

Table 5-20: Access Method Provider Table

	Tag
	Length
	Value

	0x91
	1
	Number of AMP entries

	0x90
	Length includes nested TLV structure 0x92
	AMP entry (structured as follows)

	
	
	 Access Method provider ID (short form) (1 byte)

	0x92
	*
	 Access Method provider AID

	0x90
	*
	Next AMP entry

	
	
	…

Data field returned in the response message when P1 is 0x21

The data field returned in the response message contains all the entries of the Service Applet table.

Table 5-21: Service Applet Table

	Tag
	Length
	Value

	0x94
	1
	Number of Applet entries

	0x93
	*
	Applet entry (structured as follows)

	
	
	 Applet ID (short form) (1 byte)

	0x92
	*
	 —Applet AID

	0x93
	*
	Next Applet entry

	
	
	…

Processing state returned in the response message

If properties retrieval succeeds, SW1 = 0x61 and SW2 = size of next block of data available to read.

	SW1
	SW2
	Meaning

	61
	LL
	More data available, 0xLL specifying the size of next block to read.

For other status conditions see Table 5-11b.

5.3.3.5 GET RESPONSE APDU

The GET RESPONSE APDU is used to read from the smart card the data available from the completion of the previous APDUs.

Command Message

	CLA
	0x00

	INS
	0xC0

	P1
	0x00

	P2
	0x00

	Lc
	Empty

	Data Field
	Empty

	Le
	Number of bytes to read in response

Response Message

Data field returned in the response message

If the APDU result indicates success, Le number of bytes will be available to read from the smart card.

Processing state returned in the response message

See Table 5-11b.

5.3.3.6 VERIFY PIN APDU

The VERIFY command is used to verify the global PIN code, or to check if the PIN code verification is required, or to check whether or not the PIN code has been already verified. The global PIN is a root level key.

Command Message

	CLA
	0x00

	INS
	0x20

	P1
	0x00

	P2
	0x00

	Lc
	0xNN (Effective PIN length) or empty

	Data Field
	PIN code to be verified or empty

	Le
	Empty

Note: The maximum effective PIN length is dependent on the card platform.

Data field sent in the command message

If the data length and the data field sent in the command message are empty (data field does not include a PIN code), the command corresponds to a PIN verify check command, and it is used to determine if the PIN code verification is necessary and whether or not the PIN code has been already verified.

If the verification fails, the PIN-tries-remaining flag is decremented, and the PIN-verified flag value does not change. The PIN-always flag value is set to 0x00. If the PIN-tries-remaining flag value is 0x00, the PIN code is considered blocked. If the verification succeeds, the PIN-verified flag value and the PIN-always flag value are both set to 0x01.

Response Message

Data field returned in the response message

The data field in the response message is always empty.

Processing state returned in the response message

If PIN verification succeeds, SW1=0x90 and SW2=0x00.

If PIN verification fails, the status code returned is SW1 = 0x63, SW2 = number of remaining PIN tries.

If PIN verify check command is submitted and PIN is already verified, SW1=0x90 and SW2=0x00, otherwise SW1 = 0x63, SW2 = 0xCX, where X = number of remaining PIN tries.

	SW1
	SW2
	Meaning

	90
	00
	PIN verification succeeds

	63
	CX
	PIN not verified and X indicates the remaining tries

	6A
	83
	PIN code blocked

	6A
	88
	No PIN code defined

5.3.4 Generic Container Provider Virtual Machine Card Edge Interface

Table 5-22 shows the Generic Container Provider VM APDUs. As described in Chapter 8, containers accessed by these APDUs are split into two buffers: a TL buffer containing Tag and associated Length values, and a V buffer containing the values identified by the corresponding Tags and Lengths.

Table 5-22: Generic Container VM APDUs

	Card Function
	CLA
	INS
	P1
	P2
	Lc
	Data
	Le

	READ BUFFER
	0x80
	0x52
	Off/H
	Off/L
	0x02
	Buffer type and number bytes to read
	–

	UPDATE BUFFER
	0x80, 0x84
	0x58
	Off/H
	Off/L
	Lc
	Buffer type and data to update
	–

5.3.4.1 UPDATE BUFFER APDU

This command allows updating all or part of a buffer.

Command Message

	CLA
	0x80

	INS
	0x58

	P1
	Reference Control Parameter P1

	P2
	Reference Control Parameter P2

	Lc
	1+ Length of data to be updated

	Data Field
	Buffer type (1 byte) + data to be updated

	Le
	Empty

Reference control parameter P1/P2

The reference control parameters P1 and P2 shall be used to store the offset from which data are to be written. This offset is calculated by concatenating the P1 and P2 parameters (P1 = MSB, P2 = LSB).

Data field sent in the command message

The first byte of the data field shall be used to indicate which buffer is to be updated.

The possible values are:

0x01:
T-buffer

0x02:
V-buffer

The other bytes correspond to the data to be updated.

Response Message

Data field returned in the response message

The data field in the response message is always empty.

Processing state returned in the response message

	SW1
	SW2
	Meaning

	67
	00
	Invalid command data length

	6A
	86
	Wrong P1/P2 (Try to update data out of the buffer)

	6A
	88
	No corresponding buffer (invalid Buffer Type)

5.3.4.2 READ BUFFER APDU

This command allows reading all or part of a buffer.

Command Message

	CLA
	0x80

	INS
	0x52

	P1
	Reference Control Parameter P1

	P2
	Reference Control Parameter P2

	Lc
	0x01 + 0x01 = 0x02

	Data Field
	Buffer type (1 byte value) followed by the data length to read (1 byte value)

	Le
	Empty

Reference control parameter P1/P2

The reference control parameters P1 and P2 shall be used to store the offset from which data are to be read. This offset is calculated by concatenating the P1 and P2 parameters (P1 = MSB, P2 = LSB).

Data field sent in the command message

The data field shall be used to indicate which buffer is to be read.

The possible values are:

0x01:
T-buffer

0x02:
V-buffer

Response Message

Data field returned in the response message

The data field in the response message corresponds to the data read from the smart card, according to the P1, P2 parameters (offset indicating from where to read data) or empty if GET RESPONSE command is required to receive data read from the smart card.

Processing state returned in the response message

If READ BUFFER command was successful, SW1=0x90 and SW2=0x00, any available data is returned in the data field of the response message. If command is successful and SW1=0x61, SW2=0xLL indicates 0xLL bytes were read from the smart card and are available. A GET RESPONSE command shall be sent to receive read data of length 0xLL.

	SW1
	SW2
	Meaning

	67
	00
	Invalid command data length

	6A
	86
	Wrong P1/P2 (Try to update data out of the buffer)

	6A
	88
	No corresponding buffer (invalid Buffer Type)

5.3.5 Symmetric Key Provider Virtual Machine Card Edge Interface

Table 5-23 shows the Symmetric Key Provider VM APDUs.

Table 5-23: Symmetric Key VM APDUs

	Card Function
	CLA
	INS
	P1
	P2
	Lc
	Data
	Le

	GET CHALLENGE
	0x00, 0x80
	0x84
	0x00
	0x00
	–
	–
	0x08

	EXTERNAL AUTHENTICATE
	0x8X
	0x82
	AlgID
	Key #
	Lc
	Cryptogram
	–

	INTERNAL AUTHENTICATE
	0x00
	0x88
	AlgID
	Key #
	Lc
	Challenge
	Le

5.3.5.2 GET CHALLENGE APDU

The GET CHALLENGE command is the first step of the host authentication process and is followed immediately by the EXTERNAL AUTHENTICATE command. The computed challenge is valid only for the following EXTERNAL AUTHENTICATE APDU.
Command Message

	CLA
	0x00

	INS
	0x84

	P1
	0x00

	P2
	0x00

	Lc
	Empty

	Data Field
	Empty

	Le
	Challenge length (has to be 8 bytes)

Response Message

Data field returned in the response message

The response message contains the challenge used later for authentication.

Processing state returned in the response message

See Table 5-11b.

Note: The computed challenge must be stored within the applet instance in order to evaluate the expected EXTERNAL AUTHENTICATE command. The client application shall encrypt the challenge received from the smart card using a cryptographic algorithm known by the smart card and the corresponding shared key. The cryptographic algorithm is DES3-ECB with a 16-byte key. The encrypted challenge shall then be submitted to the smart card using the EXTERNAL AUTHENTICATE command.
5.3.5.4 EXTERNAL AUTHENTICATE APDU

This EXTERNAL AUTHENTICATE command is a subset of the ISO 7816-4 [ISO4] standard command. The default cryptographic algorithm is DES3-ECB with double length key size (16 bytes) and an 8-byte challenge requested from the smart card using the GET CHALLENGE command just before the authentication command is submitted. This command is introduced to allow external authentication with different cryptographic algorithms selected through the P1 parameter and multiple key sets if same data is updated by different applications that do not desire to share their keys.

Command Message

	CLA
	0x80

	INS
	0x82

	P1
	Algorithm identifier and security level

	P2
	0x00 for default key, 0x01 to 0x63 for key number

	Lc
	Length of the cryptogram

	Data Field
	Cryptogram

	Le
	Empty

CLA:

0x8X where X is defined as follows:

	CLA
	Meaning

	b8
	b7
	B6
	b5
	b4
	b3
	b2
	b1
	

	1
	0
	0
	0
	0
	0
	0
	0
	No secure messaging format.

	1
	0
	0
	0
	0
	1
	0
	0
	Proprietary Secure Messaging format.

P1:
0xAS where A specifies the algorithm identifier using the 4-MSb of P1 and S defines the secure messaging and command encryption as described below, using the 4-LSb of the parameter. Table 5-6 contains the algorithm identifiers.

The following values can be specified during the setup, using the 4-LSb of P1 as follows:

	P1
	Meaning of

	b8
	b7
	B6
	b5
	b4
	b3
	b2
	b1
	A (b8-b5)
	S(b4-b1)

	0
	0
	0
	0
	 0
	0
	 0
	 0
	Default algorithm or already known
	No secure messaging expected

	0
	0
	0
	0
	 0
	0
	0
	 1
	Default algorithm or already known
	Secure messaging C-MAC (Global Platform)

	0
	0
	0
	0
	 0
	 0
	 1
	1
	Default algorithm or already known
	Command encryption and C-MAC (Global Platform)

	–
	–
	–
	–
	0
	0
	0
	0
	Algorithm Identifier
	No secure messaging expected

	–
	–
	–
	–
	 0
	0
	0
	 1
	Algorithm Identifier
	Secure messaging C-MAC (Global Platform)

	–
	–
	–
	–
	 0
	 0
	 1
	1
	Algorithm Identifier
	Command encryption and C-MAC (Global Platform)

Response Message

Data field returned in the response messageEmpty.

Processing state returned in the response message:

For specific status conditions see Table 5-11b.
5.3.5.5 INTERNAL AUTHENTICATE APDU

This command is used to perform a DES3 (DES) challenge-response authentication.

Command Message

	CLA
	0x00

	INS
	0x88

	P1
	0x00 for the default DES3-ECB or Algorithm ID as defined in the CCC

	P2
	0x00 for default key or key #

	Lc
	Length of the subsequent data field

	Data Field
	Authentication related data (e.g. Challenge)

	Le
	0xLL Maximum number of bytes expected in response

Data field sent in the command message

The data field contains the data to be encrypted by the smart card using the selected key.

Response Message

Data field returned in the response message

The data field in the response message contains the data encrypted. The length of the response may vary and depends on the configuration of the applet.

Processing state returned in the response message

See Table 5-11b.

5.3.6 Public Key Provider Virtual Machine Card Edge Interface

The Public Key Provider VM APDU set consists of one APDU, the Private Sign/Decrypt APDU as detailed in Section 5.3.6.1.

5.3.6.1 PRIVATE SIGN/DECRYPT APDU

This command is used to perform an RSA signature or data decryption.

Command Message

	CLA
	0x80

	INS
	0x42

	P1
	0x00

	P2
	0x00

	Lc
	Data Field length

	Data Field
	Data to sign or decrypt

	Le
	Expected length of the signature/decryption

Data field sent in the command message

The data field contains the data to be signed using the selected RSA key pair.

The data must be already padded before the message is sent.

Response Message

Data field returned in the response message

The data field in the response message contains the data signed or decrypted. The client application is responsible for any data padding.

Processing state returned in the response message

See Table 5-11b.

THIS PAGE INTENTIONALLY LEFT BLANK.

6. Card Capabilities Container

6.1 Overview

To accommodate variations in smart card APDU set implementations, the GSC-IS defines a VCEI and a general mechanism for mapping a smart card’s native APDU set to the VCEI. This mechanism is based on the GSC-IS Card Capability grammar. The differences between a smart card’s APDU set and the standard APDU set defined by the VCEI are carried on the smart card in the CCC.

Each GSC-IS conformant smart card shall contain a CCC and support a standard procedure for accessing it as defined in section 6.2. The contents of a CCC shall conform with the formal card capabilities grammar defined in this chapter.

Virtual Machine cards can be programmed to directly implement the VCEI APDU set. However, Virtual Machine cards shall still contain a CCC.

Figure 6-1: The Card Capability Container

Before the card-specific APDU definitions can be used to communicate with the smart card, the CCC must be read.

6.2 Procedure for Accessing the CCC

The CCC is designated by the Capabilities Application Identifier (AID: GSC-RID||DB00). The Universal AID of the smart card CCC shall be 0xA000000116DB00. The CCC shall be the default container of a CCC applet on a VM card. This container shall be selected by default when the CCC applet is selected.

The CCC is implemented as a transparent (binary) file on file system cards. The GSC CCC Elementary File (EF) shall be contained in the Master Directory (FID: “0x3F00”) and is designated by the Capabilities Application Identifier (AID: GSC-RID||DB00) as well as the FID: “0xDB00”.

	

Figure 6-2: Location of the CCC Elementary File in a file system card

6.2.1 General CCC Retrieval Sequence

The CCC shall be stored under a known AID on Virtual Machine cards and a known FID under File system cards. The following CCC retrieval sequence shall be executed after an ATR (Answer-To-Reset) to the smart card. The retrieval sequence is used to determine which card edge interface is implemented, virtual machine card edge or File system card edge and then to read the CCC. Once the ATR is successful, the SPS first attempts to retrieve the CCC using the procedure for Virtual machine cards. If this fails, the SPS then attempts to read the CCC using the file system card procedure. If that also fails, the SPS assumes that the smart card does not contain a CCC and is not GSC-IS conformant.

The procedure for the retrieval of the CCC is as follows:

16. The SPS sends a SELECT APPLET APDU to the smart card as shown in the following table:

	CLA
	INS
	P1
	P2
	Lc
	DATA

	0x00
	0xA4
	0x04
	0x00
	Length of AID
	AID

17. The CCC applet is selected on a VM card if the smart card returns the status bytes “0x9000” or “0x61LL” (“LL” indicates more data available). If not, the SPS then attempts to use the File system procedure to access the CCC as defined in steps 4-8.

3.
A successful applet selection is followed by an attempt to read the CCC by sending a READ BUFFER APDU command as specified in the Card Edge Interface for VM cards. The READ BUFFER APDU is sent as follows:

	CLA
	INS
	P1
	P2
	Lc
	DATA

	0x80
	0x52
	P1
	P2
	0x02
	Buffer type +data length to read

Note 1 : Reference Control Parameter P1/P2 : See Card Edge interface for VM (Chapter 5, section 5-44)

Note 2 : The first buffer to be read is the TL-Buffer (Buffer type = “0x01”), the second buffer to be read is the V-Buffer (Buffer type = “0x02).

Note 3 : The “data length to read” is application/vendor specific, but in practice it is advisable to set it to 64.

If no error status bytes are returned, the smart card will return the data read from the card with “0x9000” status byte to indicate complete completion or “0x61LL” to indicate that “LL” bytes are still available to read. The TL-Buffer and the V-Buffer shall be entirely read.

If an error status byte is returned and the card does not support the READ BUFFER APDU command, the SPS attempts to use the File system card edge by sending a READ BINARY APDU with CLA=”0x00” as defined in step 5. If this succeeds, the VM card is using the File system card edge APDUs. If this fails and the smart card does not support READ BINARY either, the smart card is not GSC-IS compliant.

18. For the file system card, the SPS sends a sequence of APDUs to the smart card until the CCC is successfully read. This sequence selects the Master File (MF) using its reserved FID value “0x3F00”, then the CCC Elementary File (EF) using its reserved FID value “0xDB00”, and then performs a binary read operation on that CCC Elementary File.

The SPS sends a SELECT MF APDU command as follows:

	CLA
	INS
	P1
	P2
	Lc
	DATA

	TEST CLA
	0xA4
	0x03
	0x00
	0x02
	0x3F00

Note 1 : The default TEST CLA values are: 0x00, 0xC0, 0xF0, 0x80, 0xBC, 0x01. The CLA value “0x00” is ISO 7816-4 [ISO4] conformant. The value “0x00” shall be the first to be tested. (Additional test values for CLA are: 0x90, 0xA0, 0xB0-0xCF.)

19. If the returned status byte is “0x6E00”, the tested Class byte is not supported. The SPS loops back to step 4 and attempts the next CLA value.

20. If the returned status byte is “0x9000” or “0x61LL” (“LL” indicates more data available), then the command structure and CLA value are correct.

21. Once CLA has been determined, the SPS selects (CCC) EF under MF as follows:

	CLA
	INS
	P1
	P2
	Lc
	DATA

	Determined CLA
	0xA4
	0x02
	0x00
	0x02
	0xDB00

The CCC EF is selected if no error codes are returned.

22. Then to Read a binary file (with no secure messaging), the SPS uses the following Read binary APDU on the selected CCC EF:

	CLA
	INS
	P1
	P2
	Le

	Determined CLA
	0xB0
	Off/H
	Off/L
	Le

Note 2: P1, P2 and Le are as defined in section 5.1.1.2Note 3: SPS implementations should define a timeout value, to avoid an infinite wait for a response from the smart card. The timeout mechanism and value are application specific, since in some cases the card reader driver layer may provide this. The SPS will return BSI_TIMEOUT_ERROR in response to a gscBsiUtilConnect() if a connection cannot be established before the timeout value expires.

6.2.2 Card Capabilities Container Structure

For a file system card, the Card Capability Container shall be an elementary file. The file consists of a string of SIMPLE Tag-Length-Value (TLV) data objects with no encoding, with the exception of fields that use structured SIMPLE TLV (“Application CardURL” and ”Access Control Rule Table” fields).

For a VM card, the Card Capability Container shall be the default container (buffer) managed by the CCC applet. The internal format of that CCC container is defined in Section 8.2.

For both card types, the CCC is configured for ALWAYS READ. However, it is up to each implementer to define write/modify rules.

Table 6-1: CCC Fields

	Card Capabilities Container
	FID: 0xDB00
	Always Read

	Data Element (TLV)
	Tag
	Type

	Card Identifier
	0xF0
	Variable

	Capability Container version number
	0xF1
	Fixed: 1 byte

	Capability Grammar version number
	0xF2
	Fixed: 1 byte

	Applications CardURL
	0xF3
	Variable – Multiple Objects

	PKCS#15
	0xF4
	Fixed: 1 byte

	Registered Data Model number
	0xF5
	Fixed: 1 byte

	Access Control Rule Table
	0xF6
	Variable – Multiple Objects

	CARD APDUs
	0xF7
	Fixed: 6 bytes

	Redirection Tag
	0xFA
	Variable

	Capability Tuples (CTs)
	0xFB
	Variable: Collection of 2 byte Tuples

	Status Tuples (STs)
	0xFC
	Variable: Collection of 3 byte Tuples

	Next CCC
	0xFD
	Application Card URL, 20 bytes or greater

	Optional Issuer Defined Objects
	Issuer Defined
	Variable

	Error Detection Code
	0xFE
	LRC

6.3 CCC Fields Description

Sections 6.3.1 through 6.3.9 describe the CCC fields defined in Table 6-1. The smart card issuer may include additional TLV objects in the Card Capabilities Container for application specific purposes. These are not needed for interoperability but may be used to facilitate extended applications. They may be ignored by any implementation without affecting interoperability. Any optional objects that are not recognized shall be ignored.

6.3.1 Card Identifier Description

The Card Identifier shall be specified by each issuing organization for each card type. Among other things, the Card Identifier allows a client application to determine the type of card it is communicating with. The CardUniqueIdentifier is defined by the following ASN.1 sequence:

CardUniqueIdentifier ::= SEQUENCE {

GSC-RID

OCTET STRING SIZE(5)

ManufacturerID

BIT STRING SIZE(8),

CardType,

CardID

STRING

}

cardType ::=

CHOICE {

fileSystemCard

[0] BIT STRING SIZE(8) : ‘0x01’,

javaCard

[1] BIT STRING SIZE(8) : ‘0x02’,

Multos

[2] BIT STRING SIZE(8) : ‘0x03’,

JavaCardFS

[3] BIT STRING SIZE(8) : ‘0x04’,

...

}

JavaCardFS refers to a Java Card implementing the file system card edge defined in Chapter 5.

6.3.2 Capability Container Version Number

The Capability Container Version Number field describes the version of the card capability container. The field is of length one byte; the high order nibble of the byte describes the major version number, and the low order nibble of the byte describes the minor version number.

CapabilityContainerVersion ::= SEQUENCE {

MajorVersion

BIT STRING SIZE(4),

MinorVersion

BIT STRING SIZE(4)

}

For instance, for this version of the card capability container, the high order nibble would contain the number 2, and the low order nibble would contain the number 1, to correspond to version 2.1.

6.3.3 Capability Grammar Version Number

The Capability Grammar Version Number field describes the version of the card capability container grammar. The field is of length one byte; the high order nibble of the byte describes the major version number, and the low order nibble of the byte describes the minor version number.

CapabilityGrammarVersion ::= SEQUENCE {

MajorVersion

BIT STRING SIZE(4),

MinorVersion

BIT STRING SIZE(4)

}

For instance, for this version of the card capability container grammar, the high order nibble would contain the number 2, and the low order nibble would contain the number 1, to correspond to version 2.1.

6.3.4 Applications CardURL Structure

The Card Capabilities Container may contain multiple instances of Applications CardURL structures, each denoted by the tag value “0xF3”. They can be assembled into a list of the applications, including FIDs and paths, Key Identifiers and Access Control Methods, which are supported by the card (see Section 7.1).

The structure of the Applications CardURL is denoted {T-L-{T1-L1-V1} … {Tn-Ln-Vn}} with a tag field followed by a length field encoding a number. If the number is not zero, then the value field of the constructed data object, called "template" in ISO/IEC 7816, consists of one or more SIMPLE TLV data objects, each one consisting of a tag field, a length field encoding a number and if the number is not zero, a value field.

6.3.5 PKCS#15

The PKCS#15 Field, if non-zero, indicates that the smart card conforms to PKCS#15. If the field is non-zero, it shall indicate the version of PKCS#15.

6.3.6 Registered Data Model Number

The Registered Data Model number indicates the registered Data Model in use by the smart card.

6.3.7 Access Control Rules Table

The Access Control Rules Table allows Access Control Rules to be recorded only once in the card with the advantage of saving space and allowing centralized management. The table definition is either stored directly in the CCC or in the Access Control Applet (ACA) of a VM card in which case the CCC has a reference to the AID of the Access Control Applet.

For additional information on structure format, see Section 6.3.4.

ACRTableOrAIDReference ::= CHOICE {

acrTable

[0] ACRTable,

acrTableAID

[1] STRING SIZE(16)

}

ACRTable ::= SEQUENCE {

acrs

SEQUENCE OF ACR,

accessMethods

SEQUENCE OF AccessMethod,

accessMethodProviders
SEQUENCE OF AccessMethodProvider

}

ACR ::= SEQUENCE {

acrID

BIT STRING SIZE(8),

acrType

BIT STRING SIZE(8),

accessMethodIDs

}

accessMethodIDs :: = SEQUENCE {

AccessMethodID
BIT STRING SIZE(8)

}

AccessMethod ::= SEQUENCE {

accessMethodID

BIT STRING SIZE(8),

accessMethodProviderID
BIT STRING SIZE(8),

keyIDOrReference

BIT STRING SIZE(8)

}

AccessMethodProvider ::= SEQUENCE {

accessMethodProviderID

BIT STRING SIZE(8),

accessMethodProviderAID
STRING SIZE(16),

accessMethodType

BIT STRING SIZE(8)

}
6.3.8 Card APDUs

The card capability container optionally may contain a 6-byte Card APDUs field for the purposes of informing the SPS which ISO 7816-4 [ISO4] and 7816-8 [ISO8] APDUs are available on the smart card. Each bit in the string, if set to 1, would indicate the presence of a corresponding APDU. The card APDUs field is described in more detail in Section 5.2.3.

6.3.9 Redirection Tag

In the case an implementer decides that a specific subset of Tags need a particular Security Context and that a specific access control rule should be enforced, it is possible to create a Container for this set of Tags.

The Redirection Tag can be used to indicate to the BSI Provider, Data Model Tags are being “redirected” to the Container.

The “value” part of the TLV for this redirection Tag can be described as follows:

Redirection_value ::=
SEQUENCE {

dedicatedFileID

BIT STRING SIZE(16),

Tags

}

Tags :=

SEQUENCE {

tagID

BIT STRING SIZE(8),

...

}
where each “tagID” is a redirected tag.

A DM can have any number of “redirection flags” to handle Tag level exceptions to the nominal DM.

6.3.10 Capability and Status Tuples

The CCC shall contain a single Capability Tuple (CT) object, which consists of a collection of two byte tuples defining the capabilities, formats and procedures supported by the smart card. The VCEI defines a default set of APDUs that represent a generic implementation of the ISO 7816 standard. It is only necessary to include CT’s to indicate a variance between a given smart card’s capabilities and the default set.

The CCC may contain a single Status Tuple (ST) object, consisting of a collection of three byte tuples that define the possible status codes for each function. It is only necessary to include STs that differ from the VCEI’s status codes and the status codes defined in ISO 7816-4 [ISO4].

Sections 6.3.11 through 6.3.14 describe the construction of tuples in more detail.

6.3.11 Capability Tuples

The CCC shall contain a sequence of two-byte elements called tuples. Each tuple comprises a C-byte and a V-byte as shown in Table 6-2. Each tuple describes one piece of an APDU for a particular command. For example, one tuple may define the value of the CLA byte for a Select File command, while another tuple may define the value of P1 for the same command.

Table 6-2: Tuple Byte Descriptions

	C - Code Byte
	
	V – Value/Descriptor Byte

	7
	6
	5
	4
	3
	2
	1
	0
	
	7
	6
	5
	4
	3
	2
	1
	0

	0= Const
	Parameter
	Function Code
	
	If C bit 7 = 0 Then V contains a constant value

	1= Desc
	
	
	
	If C bit 7 = 1 Then V contains a Descriptor code

The C-byte of the tuple is the Code Byte. It identifies the particular command and parameter that is being defined. The V-byte is the Value Byte, which provides either the value to be used for the parameter or a descriptor code that represents the definition of the parameter, that is, what the parameter is in the APDU. This could be, for example, the most-significant byte of the offset for a Read Binary command, or the CHV level for a Verify Pin command. Whether the V-byte is a constant value or a descriptor code is determined by the 7th bit (most significant bit) of the C-byte. If this bit is 0, the V-byte contains a value while, if it is 1, the V-byte contains a descriptor code. Bits 6 through 4 of the C-byte identify the parameter and bits 3 through 0 identify the particular command.

The possible values for the codes used in the C and V-bytes are summarized in Table 6-3.

Table 6-3: Parameter and Function Codes

	Parameter Codes
	
	Function Codes

	0x00
	DATA
	
	0x00
	Reserved, Used for Shift Operation (see Section 6.4.2)

	0x01
	CLA
	
	0x01
	Select DF

	0x02
	INS
	
	0x02
	Transparent Read (Binary)

	0x03
	P1
	
	0x03
	Update Binary File

	0x04
	P2
	
	0x04
	RFU

	0x05
	P3*
	
	0x05
	Manage Security Environment

	0x06
	Prefix
	
	0x06
	Get Challenge

	0x07
	Suffix
	
	0x07
	Get Response

	
	
	0x08
	Verify (CHV)

	
	
	0x09
	Internal Authenticate

	
	
	0x0A
	External Authenticate

	
	
	0x0B
	Perform Security Operation

	
	
	0x0C
	Select File

	
	
	0x0D
	Select EF (under current DF)

	
	
	0x0E
	Select MF (root)

	
	
	0x0F
	RFU

*Note : P3 is a Length (Lc or Le)

6.3.12 Prefix and Suffix Codes

Parameter codes 06 (hexadecimal) and 07 represent prefix and suffix commands respectively. These are commands (function codes) that must execute before or after the specified function code. For example, on some smart cards, a GET RESPONSE must succeed a cryptographic function, or a VERIFY must precede a READ BINARY with secure messaging.

6.3.13 Descriptor Codes

The descriptor codes are used to add processing information for data values or parameters. Parameters can be described by at most one descriptor code, whereas data values can be described by multiple, successive descriptor codes. Table 6-10 presents a summary of all descriptor codes.

6.3.14 Status Tuples

The purpose of the Status Tuples is to map a smart card’s non-standard status response SW1 & SW2 into a common set of status conditions for a given function. It is not mandatory to list any status conditions that conform to ISO-7816. Status Tuples shall consist of three bytes, labeled S, SW1 and SW2, which describe the possible status conditions for each function. Multiple sets of SW1 and SW2 may translate into a single Status Condition. Tables 6-4 through 6-6 describe the status tuple construction and status condition codes.

Table 6-4: Status Tuples

	S
	
	SW

	7
	6
	5
	4
	3
	2
	1
	0
	
	SW1
	SW2

	Status Condition
	Function Code
	
	
	

	
	
	
	
	

Table 6-5: Standard Status Code Responses

	Status Conditions

	0x00
	Successful Completion

	0x01
	Successful Completion – Warning 1

	0x02
	Successful Completion – Warning 2

	0x03
	Reserved

	0x04
	Reserved

	0x05
	Reserved

	0x06
	Reserved

	0x07
	Reserved

	0x08
	Access Condition not Satisfied

	0x09
	Function not Allowed

	0x0A
	Inconsistent Parameter

	0x0B
	Data Error

	0x0C
	Wrong Length

	0x0D
	Function not compatible with file structure

	0x0E
	File/Record not Found

	0x0F
	Function Not Supported

6.3.15 Next CCC Description

This field, if included, is used to point to another CCC container. The values in this next CCC container will override values in the current CCC or define new values and fields. The Next CCC field contains an Applications CardURL structure, with minimum length of 20 bytes.

6.4 CCC Formal Grammar Definition

Using a modified Backus-Naur notation, a definition for the Card Capability Grammar is presented as follows:

Command_Unit,[Command_Unit,...]

Command_Unit:(

FC:(function_code,[extension]),

Command:(

APDU:(

CLA:(class,[qual=0xFE]),

INS:instruction,

P1:((p_constant|<value>),def:{code,...}),

P2:((p_constant|<value>,def:{code,...}),

P3:(length,def:{code,...}), //of data

DATA:(composition:data_type[+data_type(...)])

),

[Prefix:function_code], //could depend on extension

[Suffix:function_code] //could depend on extension

)

6.4.1 Grammar Rules

A description of the symbols follows:

	Symbol
	Meaning

	:
	is composed of

	[]
	optional element

	()
	includes or included in

	,
	separates elements

	…
	element repeats unspecified number of times

	{ }
	choose one from list

	< >
	element value must be given at execution time

	|
	or, indicates choice of possibilities for element value

	+
	element is combined with preceding element

	//
	remainder of line contains comments

In general, the word immediately preceding a colon is the name of the element, while the word to the right of the colon is the name of an element value that may be expected. A description of the element values is given as follows:

	Element
	Meaning

	Function code
	value from function code table, always required when other elements are present

	Class
	value for the APDU CLA byte, when entered this is a constant

	Instruction
	value for APDU INS byte, when entered this is a constant

	Extension
	 (see discussion about extended function code)

	P_constant
	value for the APDU P1 or P2 byte, when entered this is a constant

	Code
	code for parameter definition, the code must be in the descriptor table

	Length
	length of data element, when entered this is a constant

	Data_type
	code for the composition of the APDU Data field, must be in the descriptor table

	Qual
	Qualifier for CLA; only possible value is 0xFE to indicate command is not available

Note that all elements except function_code are essentially optional in a command_unit. The square brackets [] are used to emphasize that the enclosed optional elements can only be present if the preceding element is present.

The rules for building and APDU definition according to the formal grammar are as follows:

· The sequence of tuples is organized in groups called command units; all tuples pertaining to a single command unit must be presented in contiguous sequence.

· The sequence of tuples is important and must be presented in the order defined by the formal grammar.

· Each command unit consists of a required function code and optional APDU elements.

· When present, the CLA element may have a constant value (and/or one qualifier code equal to 0xFE, which indicates the command is not available on the smart card).

· When present, the INS element must have a constant value.

· When present, the P1 element may optionally have a constant value and/or one/multiple definition code.

· When present, the P2 element may optionally have a constant value and/or one/multiple definition code.

· When present, the P3 element may have a constant value; P3 always refers to the length of the DATA element in the Command APDU or the length of the expected DATA element in the Response APDU (respectively Lc or Le).

· The DATA element may have multiple data type codes; when combined the data type codes define the composition of the value to be placed in the APDU data field.

As an example of using the Card Capability Grammar, consider the following GSC-IS-default APDU for a Select Dedicated File command along with the same command for the Schlumberger [Cryptoflex] card:

Table 6-6: Default vs. Schlumberger DF APDU

	Select Dedicated File (DF)

	Card Type
	CLA
	INS
	P1
	P2
	P3
	Data

	GSC-IS Default
	00
	A4
	01
	00
	L (02)
	File ID (2 bytes)

	Schlumberger Cryptoflex
	C0
	A4
	00
	00
	L (02)
	File ID (2 bytes)

The formal grammar definition of the Cryptoflex command is as follows:

FC:01, CLA:C0, INS:A4, P1:00, P2:00, P3:(02,def:15), DATA:21

which translates into the following tuple sequence:

11C0 21A4 3100 4100 5102 D115 8121

The method for creating the tuple sequence is shown in the Table 6-7, where the C-Byte and V-Byte are built from the parameter, function, and descriptor codes given in the Table 6-3 and Table 6-10.

Table 6-7: Tuple Creation Sequence

	#
	C-Byte
	V-Byte
	Description
	Tuple

	
	S
	P
	FC
	
	Function, Parm
	V/D
	Value/Descriptor
	

	1
	0
	1
	1
	C0
	Select File, CLA
	V
	“C0”
	11C0

	2
	0
	2
	1
	A4
	Select File, INS
	V
	“A4”
	21A4

	3
	0
	3
	1
	00
	Select File, P1
	V
	“00”
	3100

	4
	0
	4
	1
	00
	Select File, P2
	V
	“00”
	4100

	5
	0
	5
	1
	02
	Select File, P3
	V
	“02”
	5102

	6
	1
	5
	1
	15
	Select File, P3
	D
	Length
	D115

	7
	1
	0
	1
	21
	Select File, Data
	D
	2 byte FID
	8121

Table 6-7 shows the complete tuple sequence to define the Select DF command for the Cryptoflex card according to the CC Grammar; however, the only differences in the APDU between the GSC-IS Default and the Cryptoflex card are the CLA byte and the P1 parameter. Therefore, only two tuples are necessary since the rest of the APDU is defined by the GSC-IS defaults. The tuples required to define this Select DF command for the Cryptoflex card would be:

Table 6-8: Derived Select DF Tuple

	#
	C-Byte
	V-Byte
	Description
	Tuple

	
	S
	P
	FC
	
	Function, Parameter
	V/D
	Value/Descriptor
	

	1
	0
	1
	1
	C0
	Select File, CLA
	V
	“C0”
	11C0

	2
	0
	3
	1
	00
	Select File, P1
	V
	“00”
	3100

6.4.2 Extended Function Codes

The construction of the Code Byte allows only four bits for the designation of the function code; however, it may, at times, be necessary to use more than the allocated commands. For example, prefix or suffix commands that are card specific may be required to fulfill the processing for the GSC-IS command on a particular smart card.

The reserve function code “0x00” is used to define a shift tuple. This tuple is used in the sequence of tuples to place all following function codes in a shift state defined by the high-order four bits of the shift key. The function codes are logically or’ed with the current shift tuple to create an extended function code. Placing another shift tuple in the tuple stream places function codes in an un-shift or other shift state. A diagram illustrating the mechanics is given in Figure 6-3.

SL: Shift Level; FC: Function Code; P:Parameter; Ext.: Extension

Figure 6-3: Shift Tuple Sequence (SL: shift level)

As an example of using the shift tuple, consider the following sequence of tuples in Table 6-9:

Table 6‑9: Example of Extended Function Code

	#
	C-Byte
	V-Byte
	Description
	Tuple

	
	S
	P
	FC
	
	Function, Parm
	V/D
	Value/Descriptor
	

	1
	0
	7
	8
	1C
	Verify, Suffix
	V
	“1C”
	7817

	2
	0
	1
	0
	00
	Shift up 1
	V
	“00”
	1000

	3
	0
	1
	7
	00
	Get Response, CLA
	V
	“00”
	1700

	4
	0
	2
	7
	C0
	Get Response, INS
	V
	“C0”
	27C0

	5
	0
	5
	7
	12
	Get Response, P3
	V
	“12”
	5712

	6
	1
	5
	7
	15
	Get Response, P3
	D
	15
	D715

	7
	1
	0
	7
	FD
	Get Response, Data
	D
	FD
	87FD

	8
	1
	0
	7
	38
	Get Response, Data
	D
	38
	8738

	9
	1
	0
	7
	2F
	Get Response, Data
	D
	2F
	872F

The first two tuples have function code 08h indicating a Verify command, and give the value for the Data and Suffix parameters. In this case the suffix is a GET RESPONSE with an extended function code. The third tuple is used to set the current shift state. The function codes in the following tuples are logically or’ed with the shift tuple key, which is the C-byte of the shift tuple (“10” in the previous table) to create the extended function code 17h (result of 10h logically or’ed with 07h). This extended function code is then used to identify a new command that completely specifies a GET RESPONSE using the constant value “12” for P3. In this way a card and command-specific length can be specified for the GET RESPONSE.

Table 6-10: Descriptor Codes

	Code
	Meaning
	Comments

	0x00–0x0F
	Execute Function Code
	

	0x11
	Challenge
	Card Random Number: a designated number of random byte values generated by the smart card.

	0x12
	Algorithm Identifier
	

	0x13
	RFU
	

	0x14
	RFU
	

	0x15
	Length
	

	0x16
	MSB of Offset
	The most significant byte of the file offset in bytes.

	0x17
	LSB of Offset
	The least significant byte of the file offset in bytes.

	0x18
	Key Level
	If the designated key is at the current level (local) insert the byte 0x80; otherwise, if the key is at the root level (global) insert the byte 0x00.

	0x19
	Key Identifier
	Key number

	0x1A
	CHV Level
	

	0x1B
	CHV Identifier
	CHV number on smart card

	0x1C
	AID
	Application Identifier

	0x1D
	EF
	The File ID of an Elementary File

	0x1E
	SID
	The Security Identifier value used by Microsoft Windows.

	0x1F
	Parameter is not used
	

	0x20
	RFU
	Reserved for future use

	0x21
	2 Byte FID
	The 2-byte File Identifier of the file being accessed.

	0x22
	Short FID
	The 5 least significant bits of the 2-byte File Identifier of the file being accessed.

	0x23
	File Name
	

	0x24
	AES-ECB
	AES algorithm, mode ECB

	0x25
	AES-CBC
	AES algorithm, mode CBC

	0x26
	DES
	DES algorithm

	0x27
	DES3_16
	Triple DES algorithm

	0x28
	Plain Text
	un-encrypted ANSI text

	0x29
	RFU
	

	0x2A
	Pad Data with 0s
	The Data is padded at the end with low values to length of P3

	0x2B
	PIN
	PIN value

	0x2C
	2-byte Key File Identifier
	The 2-byte File Identifier of the file of the key being referenced.

	0x2D
	PIN Type
	Pin Type

	0x2E
	RFU
	

	0x2F
	8 Byte Random Number
	

	0x30
	Length + 6
	Length of data plus 6 bytes

	0x31
	Length + 3
	Length of data plus 3 bytes

	0x32
	Max Buffer Size
	Maximum buffer size in preceding data bytes

	0x33
	n (modulus length)
	Used in the RSA algorithm

	0x34
	Message
	Plain text message to be encrypted

	0x35
	4 Byte Word
	Length or offset is given in words (one word = 4 bytes)

	0x36
	Pad Data with FF
	Data padded at end with high values

	0x37
	Length = SW2 (with SW1 =61)
	Length = low nibble of SW1-SW2 (61nn) from last response

	0x38
	RFU
	

	0x39
	RSA = 512
	RSA 512 bit algorithm using Chinese Reminder Theorem

	0x3A
	RSA = 768
	RSA 768 bit algorithm using Chinese Reminder Theorem

	0x3B
	RSA = 1024
	RSA 1024 bit algorithm using Chinese Reminder Theorem

	0x3C
	Pad = FF at beginning
	Padding (FF) put at the beginning for the length of key to be 128 bytes

	0x3D
	ANSI X9.31 Padding
	

	0x3E
	Pad = 00(8)
	Data padded at the end with low values to the 8-byte boundary (ISO 9797.2 paragraph 5.1 method 1).

	0x3F
	Pad = FF(128)
	Data padded at end with high values to total length of 128 bytes (PKCS#1)

	0x40
	Pad = FF(Front)
	

	0x41
	MD5 Header
	

	0x42
	LSN Key Encoding
	Concatenate least significant nibbles of key. For example 8 byte key can be represented by 4 bytes.

	0x43
	Terminal Random Number
	A designated number of random byte values generated on the terminal by the BSI.

	0x44
	Key Level + Key
	Most significant bit is global/local flag

	0x45
	Key File Short ID
	The 5 least significant bits of the 2-byte File Identifier of the file of the key being referenced.

	0x46
	MSB of Offset in Words
	The most significant byte of the file offset in 4 byte words.

	0x47
	LSB of Offset in Words
	The least significant byte of the file offset in 4 byte words.

	0x48
	RFU
	

	0x49
	Block Length
	

	0x4A
	TLV Format
	

	0x4B
	Operation Mode
	Cryptographic operation modes

	0x4C
	LOUD
	Length of useful data: the number of bytes in the data transmitted, without counting any padding or added bytes.

	0x4D
	RFU
	

	0x4E
	8 byte Cryptogram
	The cryptogram is generated by encryption of an 8-byte random number with a designated key, with DES encryption for an 8-byte key and DES3 encryption for a 16-byte key.

	0x4F
	RFU
	

	0x50
	Length + X
	The number of bytes to be read or written plus X, where X is the smallest value such that Length + 3 + X is evenly divisible by 8.

	0x51
	Pad with X 0xFF Bytes
	Pad data to be read or written with X 0xFF bytes where X is defined in descriptor code 0x50.

	0x52
	Select child DF of current DF
	Descriptor code used to describe variation of the ISO Select file command for P1 (Function code “0x0C”) See section 5.1.1.5

	0x53
	Length + 8
	The number of bytes of data to be read or written plus 8.

	0x54
	Select EF of current DF
	Descriptor code used to describe variation of the ISO Select file command for P1 (Function code “0x0C”) See section 5.1.1.5

	0x55
	Select parent DF of current DF
	Descriptor code used to describe variation of the ISO Select file command for P1 (Function code “0x0C”) See section 5.1.1.5

	0x56
	TLV Command Data for Update Binary
	Insert the tag byte 0x81, the length byte representing the number of data bytes to be written to the smart card, and the data bytes to be written.

	0x57
	TLV Response for Update Binary
	Interpret as the tag byte 0x99, the length byte 0x02, and two data bytes representing ISO 7816-4 status bytes SW1 and SW2.

	0x58
	TLV Command Data for Read Binary
	Insert the tag byte 0x97, the length byte 0x01, and a byte representing the number of bytes to be read from the smart card.

	0x59
	TLV Response Data for Read Binary
	Interpret as the tag byte 0x81, the length byte representing the number of data byte read from the smart card, and the data bytes read.

	0x5A
	DES3_16-ECB
	Triple DES algorithm, 16 bytes key, ECB mode,

	0x5B
	DES3_16-CBC
	Triple DES algorithm, 16 bytes key, CBC mode,

	0x5C
	DES-ECB
	DES algorithm, mode ECB

	0x5D
	DES-CBC
	DES algorithm, mode CBC

	0x5E
	RSA = 2048
	RSA 2048 bit algorithm using Chinese Reminder Theorem

	0x5F
	Key Number << 1
	The number of the designated key is shifted 1 bit to the left (equal to multiplying the key number by 2).

	0x60
	Key Level Flag
	If the designated key is at the current level (local) insert the byte 0x80; otherwise, if the key is at the root level (global) insert the byte 0x00.

	0x61
	Length + #Padding
	The length of the data transmitted plus the number of padding bytes required to fill the designate block size: 64 bytes for an RSA 512-bit key, 96 bytes for an RSA 768-bit key, and 128 bytes for an RSA 1024-bit key

	0x62
	Length of RSA Response
	The response length is the same as the padded length of data sent to the smart card in an RSA Compute command.

	0x63
	RSA Response Data
	Interpret as the return data from an RSA Compute command: a digital signature computed for a padded hash sent to the smart card, or a decrypted padded hash for a digital signature sent to the smart card.

	0x64
	Pad Hashed Data (PKCS#1)
	MD5 hash: append to data 18 header bytes: (0x10,0x04,0x00,0x05,0x05,0x02,0x0D,0xF7,0x86,0x48,0x86,0x2A,0x08,0x06,0x0C,0x30,0x20,0x30);

SHA-1 hash: append to data 15 header bytes: (0x14,0x04,0x00,0x05,0x1A,0x02,0x03,0x0E,0x2B,0x05,0x06,0x09,0x30,0x21,0x30).

For all these hash algorithms, after appending the designated header bytes, append one 0x00 byte, followed by a variable number of 0xFF bytes followed by two bytes (0x01,0x00); the number of 0xFF bytes appended brings the total number of bytes, data plus padding, to the same length as that of the PKI key (64 bytes for a 512-bit key, 96 bytes for a 768-bit key, 128 bytes for a 1024-bit key).

	0x65
	Swap Data Bytes
	The data bytes (either command data sent to the smart card or response data received from the smart card) are swapped, so that for N bytes, the 1st swapped byte is the Nth data byte, the 2nd swapped byte is the N-1st and so forth, until the Nth swapped byte is the 1st data byte.

	0x66
	TLV Key ID
	Insert the tag byte 0x84, the length byte 0x01, and a byte representing the key identifier of the key used in the PKI computation.

	0x67
	TLV Hash Algorithm ID
	Insert the tag byte 0x80, the length byte 0x01, and a byte representing the algorithm used to hash the data being signed: 0x32 for MD5 or 0x12 for SHA-1.

	0x68
	Key Length Padded Hash Data
	The first byte of the data is a value equal to the length of the PKI key being used, followed by the 0x00 byte, followed by the swapped padded hashed data bytes, with padding per descriptor byte 0x65 and swapping per descriptor byte 0x64.

	0x69
	Key Length + 2
	The value is the length of the PKI key being used plus 2.

	0x70-0x99
	RFU
	

	0xA0-0xDF
	Implementation Dependent
	

	0xE0
	Put Data Bytes
	Place Data Bytes (En) in data stream output to smart card

	0xE1-0xEF
	En N Data Bytes
	En: Next n bytes are Data Bytes

	0xF0-0xFC
	Reserved
	

	0xFD
	Interpret Response
	Following descriptor bytes are used to interpret response

	0xFE
	Command not available
	Command is not available on smart card

	0xFF
	User Input Required
	Parameter value must be supplied by use/program

THIS PAGE INTENTIONALLY LEFT BLANK.
7. Container Selection and Discovery

The GSC-IS architecture isolates client applications from the differences between virtual machine and file system cards. Virtual machine cards use AID to identify containers and file system cards use File IDs (FID) to identify files; containers and files fall under the category of “objects.” An applet on a virtual machine card may manage one or more containers, whereas a directory on a file system may contain one or more files. Client applications must be able to locate the appropriate container or file, regardless of which applet or directory is required. These differences are abstracted by defining Applications CardURL and AID structures that are common to both virtual machine and file system cards. In this context the terms “container” and “file” and “object” are synonymous. The term “container” will be used preferentially throughout this section.

7.1 AID Abstraction: The Universal AID

Client applications use Universal AIDs to select generic containers and cryptographic service modules. For generic container references, Universal AIDs are constructed by concatenating the RID value with the File ID of the desired container. For selecting cryptographic service modules, Universal AIDs are constructed by concatenating the GSC RID value with the File ID of the desired cryptographic key file (symmetric or asymmetric). For example, the Universal AID of the Card Capabilities Container on a card that conforms to the GSC-IS Data Model (Appendix C) would be 0xA000000116DB00.

7.2 The CCC Universal AID and CCC Applet

As one of its first functions, an SPS must read the CCC from the smart card. The retrieval process for the CCC is detailed in Chapter 6. For virtual machine cards, the CCC shall be the default container of an applet whose Universal AID is known by client applications (RID+”DB00”). Therefore, selecting this applet makes the CCC the default selected object available to read.

7.3 The Applications CardURL

Before accessing a container on a smart card, client applications need a method for identifying the applet and directory information associated with the container. Therefore, all GSC conformant smart cards shall provide, in the CCC, an Applications CardURL structure for each container present on the card. The Applications CardURL structure is used to uniquely reference a container on a smart card by including its Universal AID and its associated applet or directory information. This structure also provides a mechanism for client applications to determine the ACRs and PIN and key labels associated with the given container.

Applications CardURL structures are stored in the CCC as outlined in Chapter 6. The following ASN.1 sequence describes the structure of the Applications CardURL:

ApplicationsCardURL ::=

SEQUENCE {

Rid

OCTET STRING SIZE(5),

CardApplicationType,

ObjectID

BIT STRING SIZE(16),

ApplicationID

BIT STRING SIZE(16),

AccessProfile,

pinID

BIT STRING SIZE(8),

AccessKeyInfo,

keyCryptoAlgorithm

}

CardApplicationType ::=

CHOICE {

genericContainer

[0]
BIT STRING SIZE(8) : ‘0x01’,

ski

[1]
BIT STRING SIZE(8) : ‘0x02’,

pki

[2]
BIT STRING SIZE(8) : ‘0x04’

}

ObjectID ::=

CHOICE {

-- GSC data model definitions

generalInfo

[0]
BIT STRING SIZE(16) : ‘0x2000’,

proPersonalInfo

[1]
BIT STRING SIZE(16) : ‘0x2100’,

accessControl

[2]
BIT STRING SIZE(16) : ‘0x3000’,

login

[3]
BIT STRING SIZE(16) : ‘0x4000’,

cardInfo

[4]
BIT STRING SIZE(16) : ‘0x5000’,

biometrics

[5]
BIT STRING SIZE(16) : ‘0x6000’,

digitalSigCert

[6]
BIT STRING SIZE(16) : ‘0x7000’,

-- CAC data model definitions

personInstance

[7]
BIT STRING SIZE(16) : ‘0x0200’,

benefitsInfo

[8]
BIT STRING SIZE(16) : ‘0x0202’,

otherBenefits

[9]
BIT STRING SIZE(16) : ‘0x0203’,

personnel

[10]
BIT STRING SIZE(16) : ‘0x0201’,

loginInfo

[11]
BIT STRING SIZE(16) : ‘0x0300’,

pkiCert

[12]
BIT STRING SIZE(16) : ‘0x02FE’

}

AccessProfile ::=
ACRList

ACRList ::=

CHOICE {

GCACRList,

CryptoACRList

}

CryptoACRlist ::=

SEQUENCE {

listID

BIT STRING SIZE(8) : ‘0x01’,

getChallengeACRID

BIT STRING SIZE(8),

internalAuthenticateACRID
BIT STRING SIZE(8),

pkiComputeACRID

BIT STRING SIZE(8),

readTagListACRID

BIT STRING SIZE(8),

updatevalueACRID

BIT STRING SIZE(8),

readvalueACRID

BIT STRING SIZE(8),

createACRID

BIT STRING SIZE(8),

deleteACRID

BIT STRING SIZE(8)

}

GCACRlist ::=

SEQUENCE {

listID

BIT STRING SIZE(8) : ‘0x02’,
readTagListACRID

BIT STRING SIZE(8),

updatevalueACRID

BIT STRING SIZE(8),

readvalueACRID

BIT STRING SIZE(8),

createACRID

BIT STRING SIZE(8),

deleteACRID

BIT STRING SIZE(8)

}
AccessKeyInfo ::=

SEQUENCE {

keyFileID

BIT STRING SIZE(16),

keyNumber

BIT STRING SIZE(8),

keyCryptoAlgorithm

}

keyCryptoAlgorithm

CHOICE {

DES3-16-ECB

[0] BIT STRING SIZE(8) : ‘0x00’,

DES3-16-CBC

[1] BIT STRING SIZE(8) : ‘0x01’,

DES-ECB

[2] BIT STRING SIZE(8) : ‘0x02’,

DES-CBC

[3] BIT STRING SIZE(8) : ‘0x03’,

RSA256

[4] BIT STRING SIZE(8) : ‘0x10’,

RSA512

[5] BIT STRING SIZE(8) : ‘0x11’,

RSA1024

[6] BIT STRING SIZE(8) : ‘0x12’,

RSA2048

[7] BIT STRING SIZE(8) : ‘0x13’,

AES128-ECB

[8] BIT STRING SIZE(8) : ‘0x20’,

AES128-CBC

[9] BIT STRING SIZE(8) : ‘0x21’,

AES192-ECB

[10] BIT STRING SIZE(8) : ‘0x22’,

AES192-CBC

[11] BIT STRING SIZE(8) : ‘0x23’,

AES256-ECB

[12] BIT STRING SIZE(8) : ‘0x24’,

AES256-CBC

[13] BIT STRING SIZE(8) : ‘0x25’

}

7.4 Using the Applications CardURL Structure for Container Selection

The Universal AIDs associated with each data model are published in the appendices of this specification. When a client application attempts to first access a container, it will need to retrieve the Applications CardURL structure that corresponds to that container’s Universal AID, and use the information contained therein to access the container. This is done differently for file system and VM smart cards. The RID field contains the registered identifier [ISO5] data model.

7.5 File System Cards: Selecting Containers

The ObjectID field in the Applications CardURL structure contains the two-byte File ID of the desired container. In the case of file system cards, the ApplicationID field will be the two-byte File ID of either the Master File or the Directory file within the Master File.

7.6 VM Cards: Selecting Containers and Applets

For VM cards, selecting the container is a two-part process. First, one retrieves the File ID for the desired container from the ObjectID field (as with file system cards). Secondly, one retrieves the AID of the applet that manages the container; that applet’s AID is found in the ApplicationID field.

7.7 Using the Applications CardURL Structure for Identifying Access Control Rules

Identifying the access control rules associated with a specific container is straightforward after the container’s associated Applications CardURL structure is retrieved. The value of the AccessProfile field determines whether the following structure is a generic container ACR list (GCACRlist) or a cryptographic service modules ACR list (CryptoACRlist). Note that different access control rules can be associated with reading tags versus reading values.

THIS PAGE INTENTIONALLY LEFT BLANK.
8. Data Model

8.1 Data Model Overview

Data Models define a set of containers (files) and associated data elements in TLV format. The only mandatory containers are the CCC and Access Control File or SEIWG file. With the exception of the CCC and Access Control File, a GSC-IS conformant card may implement all, some, or none of the other containers associated with a Data Model. However, if the smart card uses any of the data elements defined in Data Model then it must use the container and TLV format specified by that Data Model for that element.

The SEIWG string is defined as the minimum point of functional interoperability for GSC cards. The SEIWG strings and files are therefore mandatory for both contact and contactless GSC cards.

This specification defines two Data Models. The GSC Data Model was developed for version 1.0 of the GSC-IS (see Appendix C). The GSC Data Model is sometimes referred to as the “J.8” Data Model, since it was first defined in Section J.8 of the Smart Access Common ID Card contract. The second Data Model was developed for the DoD Common Access Card (CAC) and is referred to as the CAC Data Model (See Appendix D).

Applications can discover which Data Model a given card supports by examining the Registered Data Model field of the card’s Card Capabilities Container (see Chapter 6). The Registered Data Model field shall contain a 0x01 if the card is using the GSC-IS Data Model defined in Appendix C, or a 0x02 if the card conforms to the CAC Data Model in Appendix D. Error Detection Codes (EDC) are only mandated for the GSC-IS Data Model.

8.2 Internal Tag-Length-Value Format

All container data elements are stored in SIMPLE-TLV format. Each SIMPLE-TLV data object shall consist of a tag field, a length field and an optional value field. For VM cards implementing the VM card edge interface, the SIMPLE-TLV format is split into a T-Buffer and V-Buffer. (See description in section 8.4)

The tag field T shall consist of a single byte encoding only a number from 1 to 254. No class or construction types are coded. The values “0x00” and “0xFF” are invalid for tag fields. The tag value 0xFE is reserved for the mandatory EDC data object in each container.

Note: The scope of tag values is at the container level, so the same tag value could appear in different containers and have different meanings. Unique tag values are used across all containers in the current GSC-IS Data Models, although this is not a mandatory requirement.

The length field shall consist of 1 or 3 consecutive bytes. If the leading byte of the length field is in the range from ‘00’ to ‘FE’, then the length field shall consist of a single byte encoding an integer L valued from 0 to 254. If the leading byte is equal to ‘FF’, then the length field continues on the two subsequent bytes in least significant byte-most significant byte order, which encode an integer L with a value from 0 to 65,535.

If L is not zero, then the value field V shall consist of L consecutive bytes. If L is zero or if a tag is omitted from its file/buffer, then the data object must be empty; there is no value field for that tag.

8.3 Structure and Length Values for Cards Requiring the File System Card Edge

The file system card edge requires containers to be implemented as a single file, i.e., one file comprises the container. The first TLV record of the container may optionally contain the length of the occupied space in the container as follows:

Container Byte 0:
Tag = 0xEE

Container Byte 1:
Length = 0x02

Container Byte 2:
Least significant byte of length of occupied space

Container Byte 3:
Most significant byte of length of occupied space

Container Byte 4:
Next tag value

8.4 Structure and Length Values for Cards Requiring the Virtual Machine Card Edge

The virtual machine card edge is designed to interact with containers that are split into two buffers: the T-Buffer, for storing the tag and associated tag lengths, and the V-Buffer, for storing the values. The first two bytes of each buffer contain the length of the occupied space in the buffer.

8.4.1 T-Buffer

The T-Buffer is constructed according to the TLV format (Section 8.2):

Figure 8‑1: T-Buffer Format

8.4.2 V-Buffer

The V-Buffer is constructed as follows according to the TLV format:

[image: image1.png]Lent bytes

viLen v vz

2 byes Len2 bytes
V-Buter Tota Length

Figure 8‑2: V-Buffer Format

THIS PAGE INTENTIONALLY LEFT BLANK.
Appendix A— Normative References

[DES]
National Institute of Standards and Technology, “DES Modes of Operation”, Federal Information Processing Standards Publication 81, December 1980, http://csrc.nist.gov/publications/fips.

[GLOB]
Global Platform Specification v2.1, http://www.globalplatform.org.
[ISO3]
ISO/IEC 7816-3 1995(E): Electronic Signals and Transmission Protocols, http://www.iso.ch.

[ISO4]
ISO/IEC 7816-4 1995(E): Interindustry Commands for Interchange

[ISO5]
ISO/IEC 7816-5 1994-1996 (Amendment 1): Numbering system and registration procedure for application identifiers.

[ISO8]
ISO/IEC 7816-8 1995(E): Interindustry Commands for a Cryptographic Toolbox

[ISO9]
International Organization for Standardization, “Information
Processing Systems -- Data Communication High-Level Data Link Control Procedure--Frame Structure”, IS 3309, October 1984, 3rd Edition.

[SEIWG]
Security Equipment Integration Working Group 012 Specification – 28 February 1994

THIS PAGE INTENTIONALLY LEFT BLANK.
Appendix B— Informative References

[OCF]
The OpenCard Framework, http://www.opencard.org.

[JAVA]
Java Card 2.1.1 Platform Documentation, http://java.sun.com/products/javacard/javacard21.html
[JACKSON]
GSC-IS CCC Grammar Tutorial, Jackson, Harry, 2001, http://smartcard.nist.gov/cccgrammartutorial.pdf

[PCSC]
Personal Computer/Smart Card Workgroup Specifications,

http://www.pcscworkgroup.com.

[Cryptoflex]
Cryptoflex Cards Programmer’s Guide, www.cryptoflex.com

THIS PAGE INTENTIONALLY LEFT BLANK.
Appendix C— GSC Data Model

The RID for the GSC Data Model is 0xA000000116. The registered Data Model number is 0x01, and the Data Model version number is 0x01.

Note: The Security Enterprise Integration Working Group (SEIWG, [SEIWG]) data element within the Access Control File container as required by the SEIWG specification shall be of the Packed Binary Coded Decimal (BCD) character set. All other file containers and data elements shall use the American Standards Code for Information Interchange (ASCII) character set, except for certain fields such as public key certificates, biometric data, and PINs that may be application dependent. Note also that the Access Control File and the SEIWG field contained therein are mandatory for this data model*

*NIST Technical editor comment: The previous note is subject to change pending GSC-IAB resolution on the use of 25-byte packed BCD or 40-byte unpacked BCD.
	File/Buffer Description
	FID
	Maximum
Length (Bytes)
	Read Access Condition

	Capability
	DB00
	
	Always Read

	General Information
	2000
	509
	Always Read

	Protected Personal Information
	2100
	19
	Verify CHV

	Access Control
	3000
	59
	Always Read

	Login
	4000
	141
	Verify CHV

	Card Information
	5000
	165
	Always Read

	Biometrics – X.509 Certificate
	6000
	2013
	Always Read

	PKI – Digital Signature Certificate
	7000
	3017
	Verify CHV

	General Information File / Buffer
	EF 2000
	Always Read

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	First Name
	01
	Variable
	20

	Middle Name
	02
	Variable
	20

	Last Name
	03
	Variable
	20

	Suffix
	04
	Variable
	4

	Government Agency
	05
	Variable
	30

	Bureau Name
	06
	Variable
	30

	Agency Bureau Code
	07
	Variable
	4

	Department Code
	08
	Variable
	4

	Position/Title
	09
	Variable
	30

	Building Name
	10
	Variable
	30

	Office Address 1
	11
	Variable
	60

	Office Address 2
	12
	Variable
	60

	Office City
	13
	Variable
	50

	Office State
	14
	Variable
	20

	Office ZIP
	15
	Variable
	15

	Office Country
	16
	Variable
	4

	Office Phone
	17
	Variable
	15

	Office Extension
	18
	Variable
	4

	Office Fax
	19
	Variable
	15

	Office Email
	1A
	Variable
	60

	Office Room Number
	1B
	Variable
	6

	Non-Government Agency
	1C
	Fixed Text
	1

	SSN Designator
	1D
	Variable
	6

	Error Detection Code
	FE
	LRC
	1

	Protected Personal Information File / Buffer
	EF 2100
	Verify CHV

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	Social Security Number
	20
	Fixed Text
	9

	Date of Birth
	21
	Date (YYYYMMDD)
	8

	Gender
	22
	Fixed Text
	1

	Error Detection Code
	FE
	LRC
	1

	Access Control File / Buffer (Note: File mandatory for contact cards)
	EF 3000
	Always Read

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	SEIWG Data (Note: Field mandatory for contact cards)
	30
	Fixed
	40*

	PIN
	31
	Fixed Numeric
	10

	Domain (Facility / System ID)
	32
	Variable
	8

	Error Detection Code
	FE
	LRC
	1

*NIST Technical editor comment: SEIWG Data maximum bytes subject to change pending GSC-IAB resolution on the use of 25-byte packed BCD or 40-byte unpacked BCD.
	Login Information File / Buffer
	EF 4000
	Verify CHV

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	User ID
	40
	Variable
	60

	Domain
	41
	Variable
	60

	Password
	42
	Variable
	20

	Error Detection Code
	FE
	LRC
	1

	Card Information File / Buffer
	EF 5000
	Always Read

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	Issuer ID
	50
	Variable
	32

	Issuance Counter
	51
	Variable
	4

	Issue Date
	52
	Date (YYYYMMDD)
	8

	Expiration Date
	53
	Date (YYYYMMDD)
	8

	Card Type
	54
	Variable
	32

	Demographic Data Load Date
	55
	Date (YYYYMMDD)
	8

	Demographic Data Expiration Date
	56
	Date (YYYYMMDD)
	8

	Card Security Code
	57
	Fixed Text
	32

	Card ID AID
	58
	Variable
	32

	Error Detection Code
	FE
	LRC
	1

	Biometrics – X.509 Certificate File / Buffer
	EF6000
	Always Read

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	Template
	60
	Variable
	512

	Certificate
	61
	Variable
	1500

	Error Detection Code
	FE
	LRC
	1

	PKI – Digital Signature Certificates File / Buffer
	EF 7000
	Verify CHV

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	Certificate
	70
	Variable
	3000

	Issue Date
	71
	Date (YYYYMMDD)
	8

	Expiration Date
	72
	Date (YYYYMMDD)
	8

	Error Detection Code
	FE
	LRC
	1

THIS PAGE INTENTIONALLY LEFT BLANK.
Appendix D— DoD Common Access Card (CAC) Data Model
D.1 CAC Data Model Specific

The RID for the all the files except the CCC in the CAC Data Model is 0xA000000079. The registered Data Model number is 0x02, and the Data Model version number is 0x01. The CCC RID is 0xA000000116.
The CAC containers are stored in SIMPLE-TLV format as per Chapter 8.

	File/Buffer Description
	FID
	Maximum
Length (Bytes)
	Read Access Condition

	Capability
	DB00
	
	Always Read

	Person Instance Container
	0200
	469
	PIN or External Auth

	Benefits Information Container
	0202
	19
	PIN or External Auth

	Other Benefits Container
	0203
	59
	PIN or External Auth

	Personnel Container
	0201
	141
	PIN or External Auth

	Login Information Container
	0300
	133
	PIN or External Auth

	PKI Certificate Container
	02FE
	2013
	PIN Always

	SEIWG
	007
	41
	Always Read

Technical editor comment: Thie is pending DoD decision on their method for handling contact card and SEIWG; therefore,this entry is only a place holder and subsequently, additional container information within the CAC data model is not provided..
	Person Instance File/Buffer
	EF 0200
	Always Read

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	Person First Name
	01
	Variable
	40

	Person Middle Name
	02
	Variable
	40

	Person Last Name
	03
	Variable
	52

	Person Cadency Name
	04
	Variable
	8

	Person Identifier
	05
	Fixed Text
	30

	Date of Birth
	06
	Date(YYYYMMDD)
	16

	Sex Category Code
	07
	Fixed Text
	2

	Person Identifier Type Code
	08
	Fixed Text
	2

	Blood Type Code
	11
	Fixed Text
	4

	DoD EDI Person Identifier
	17
	Fixed Text
	20

	Organ Donor
	18
	Fixed Text
	2

	Identification Card Issue Date
	62
	Date(YYYYMMDD)
	16

	Identification Card Expiration Date
	63
	Date(YYYYMMDD)
	16

	Date Demographic Data was Loaded on Chip
	65
	Date(YYYYMMDD)
	16

	Date Demographic Data on Chip Expires
	66
	Date(YYYYMMDD)
	16

	Card Instance Identifier
	67
	Fixed Text
	2

	Benefits Information File / Buffer
	EF 0202
	CHV Verify

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	Exchange Code
	12
	Fixed Text
	2

	Commissary Code
	13
	Fixed Text
	2

	MWR Code
	14
	Fixed Text
	2

	Non-Medical Benefits Association End Date
	1B
	Date(YYYYMMDD)
	16

	Direct Care End Date
	1C
	Date(YYYYMMDD)
	16

	Civilian Health Care Entitlement Type Code
	D0
	Fixed Text
	2

	Direct Care Benefit Type Code
	D1
	Fixed Text
	2

	Civilian Health Care End Date
	D2
	Fixed Text
	16

	Other Benefits File / Buffer
	EF 0203
	Always Read

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	Meal Plan Type Code
	1A
	Fixed Text
	4

	Personnel File / Buffer
	EF 0201
	Always Read

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	DoD Contractor Function Code
	19
	Fixed Text
	2

	US Government Agency/Subagency Code
	20
	Fixed Text
	8

	Branch of Service Code
	24
	Fixed Text
	2

	Pay Grade Code
	25
	Fixed Text
	4

	Rank Code
	26
	Fixed Text
	12

	Personnel Category Code
	34
	Fixed Text
	2

	Non-US Government Agency/Subagency Code
	35
	Fixed Text
	4

	Pay Plan Code
	36
	Fixed Text
	4

	Personnel Entitlement Condition Code
	D3
	Fixed Text
	4

	Login Information File / Buffer
	EF 0300
	CHV Verify

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	User ID
	0x40
	Variable
	20

	Domain
	0x41
	Variable
	20

	PasswordInfo
	0x43
	Fixed Text
	1

	ApplicationName
	0x44
	Variable
	8

	Error Detection Code
	0xFE
	LRC
	1

	PKI Certificate File / Buffer
	EF 02FE
	CHV Verify

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	Certificate
	0x70
	Variable
	1100

	CertInfo
	0x71
	Fixed Text
	1

	MSCUID
	0x72
	Variable
	38

	Error Detection Code
	0xFE
	LRC
	1

Technical editor commente:CAC data model SEIWG container definition for contact cards is pending DoD resolution
THIS PAGE INTENTIONALLY LEFT BLANK.
Appendix E— C Language Binding for BSI Services

This appendix defines the C language binding for the BSI services. This set of services consists of 23 C functions derived from the pseudo IDL specification (Chapter 4). The return codes for the functions are as defined in Section 4.4. The C binding is grouped into three functional modules as follows:

· A Smart Card Utility Provider Module

· A Smart Card Generic Container Provider Module

· A Smart Card Cryptographic Provider Module

E.1 Type Definitions for BSI Functions

The following type definitions are used by multiple BSI functions.

#typedef
unsigned long
UTILCardHandle

#typedef
unsigned char
GCtag
E.2 Parameter Format and Buffer Size Discovery Process

Many BSI function calls accept and/or return variable-length string data. The buffers that store the strings are paired with an integer value representing the number of bytes (the size of the buffer). This number includes the additional byte for the NULL terminator in the case where actual text is expected (e.g. Reader Name). Calling applications shall allocate buffers of sufficient size to hold string arguments returned by the BSI functions. The BSI shall provide a discovery mechanism to allow applications to determine required buffer size for returned data. To determine the required buffer size, the calling application must typically call the BSI function two times. The first time to get the required buffer size (discovery call), and the second time to execute the function with the correct buffer size (execution call). However, only one call is possible if the client application is able to estimate the required buffer size. In that last case, the call is an execution call.

The client application sets the pointer to the buffer that should be allocated for the returned arguments to NULL. This approach signals to the service that it must determine the buffer size required for the returned arguments and return this information in the corresponding paired integers. The client application then allocates buffers of the required size, sets the paired integers accordingly, and calls the BSI function a second time. The SPS must check the length integer against its previously cached value and, if the value contained in the length integer is greater than or equal to the required buffer length, it shall return the appropriate data in the buffers. See Example 1 and 2 in Section E.3 for additional information.

If an application knows or is able to estimate the required buffer size beforehand, it can shorten the process by making only one call. To do so, the application allocates buffers it believes to be of sufficient size to hold the data returned by the BSI function, sets the paired length integers accordingly, and calls the BSI function. The SPS shall check the length integer against the required value and, if it is greater than or equal to the required buffer length, it shall return the appropriate data in the buffers. If not, the BSI function shall return the BSI_INSUFFICIENT_BUFFER error code and the required buffer sizes in the respective paired length integers. See Example 3 in the Section E.3 for more information.

E.2.1 Variable Length String Data

Ten BSI function calls accept and/or return variable-length string data identified in Table E-1.

Table E‑1: BSI functions using the discovery method

	BSI function
	Discovery buffer
	Discovery length

	gscBsiUtilGetVersion ()
	*uszVersion
	*unVersionLen

	gscBsiUtilGetCardProperties ()
	*uszCCCUniqueID
	*unCCCUniqueIDLen

	gscBsiUtilGetReaderList ()
	*uszReaderList
	*unReaderListLen

	gscBsiUtilPassthru () (See Note in Section E.3.9)
	*uszCardResponse
	*unCardResponseLen

	gscBsiGcReadTagList ()
	*TagArray
	*unNbTags

	gscBsiGcReadValue ()
	*uszValue
	*unValueLen

	gscBsiGetChallenge ()
	*uszChallenge
	*unChallengeLen

	gscBsiSkiInternalAuthenticate ()
	*uszCryptogram
	*unCryptogramLen

	gscBsiPkiCompute ()
	*uszResult
	*unResultLen

	gscBsiPkiGetCertificate ()
	*uszCertificate
	*unCertificateLen

Each of these functions is invoked in the discovery mode by passing in a NULL value for the discovery buffer parameter. With the exception of gscBsiGcReadTagList (), each of these returns (Discovery call) the size in bytes (including the NULL Terminator) of the buffer needed to store the return variable-length string data. The lone exception, gscBsiGcReadTagList (), returns the number of tags in the tag array, so that the size of the array buffer needed is given by “*unNbTags * size of (GCtag)”.

E.3 Discovery Mechanisms Code Samples

Following are three examples in C illustrating the discovery mechanism.

The three examples make the following assumptions:

- Application defined return codes SUCCESS & FAILURE

- ERROR_RETURN reports error and returns FAILURE

- Parameters AID and AID length are given

- PROCESS_READ_CERTIFICATE processes the read of the certificate

Example 1

{

// Discovers the correct size for the certificate buffer, allocates memory and executes.

unsigned char *
pCert;

//Discovery buffer

unsigned long
unCertLen = 0;
//Discovery length

long

iRet;

//return code (“unsigned long” in the Spec)

//First call : Discovery call

iRet = gscBsiPkiReadCertificate (hCard, usAID, unAIDLen, NULL, &unCertLen);

if (iRet != BSI_OK)

ERROR_RETURN ("gscBsiPkiReadCertificate-discovery call", iRet);

if (unCertLen == 0)

ERROR_RETURN ("Unexpected BSI_OK with unCertLen == 0", unCertLen);

//Memory allocation of the buffer with the returned length from first call

pCert = (unsigned char *) malloc (unCertLen * sizeof(unsigned char));

if (pCert==NULL)

ERROR_RETURN ("Unable to allocate memory", unCertLen);

else

//Second call : Execution call

iRet = gscBsiPkiReadCertificate (hCard, usAID, unAIDLen, pCert, &unCertLen);

if (iRet != BSI_OK)

{

free (pCert);
// avoid memory leak!

ERROR_RETURN ("gscBsiPkiReadCertificate-results call", iRet)

}

else

PROCESS_READ_CERTIFICATE{…}

free (pCert);

// avoid memory leak!

return (SUCCESS);

}

Example 2

{

// Try default buffer first, if buffer is large enough normal execution occurs, or if buffer is too small reacts by discovering the length and executes.

unsigned char
usBuffer [ESTIMATED_CERT_SIZE];

unsigned char *
pCert = usBuffer;

//Discovery buffer

unsigned long
unCertLen = sizeof (usBuffer);
//Discovery length

long

iRet;
//return code (“unsigned long” in the Spec)

//First call : Discovery call, or Execution call if buffer large enough

iRet = gscBsiPkiReadCertificate (hCard, usAID, unAIDLen, pCert, &unCertLen);

if (iRet==BSI_INSUFFICIENT_BUFFER)

{

pCert = (unsigned char *) malloc(unCertLen * sizeof(unsigned char));

if (pCert==NULL)

ERROR_RETURN ("Unable to allocate memory", unCertLen);

//Second call : Execution call

iRet = gscBsiPkiReadCertificate (hCard, usAID, unAIDLen, pCert, &unCertLen);

if (iRet != BSI_OK)

free (pCert);
// avoid memory leak!

}

if (iRet != BSI_OK)
// Works for either 1st or 2nd call!

ERROR_RETURN ("gscBsiPkiReadCertificate", iRet);

PROCESS_READ_CERTIFICATE {…}

if (unCertLen > ESTIMATED_CERT_SIZE)

free (pCert);

// avoid memory leak!

return (SUCCESS);

}

Example 3

{

// Use a buffer so large that discovery is never necessary.

unsigned char
usBuffer [REALLY_BIG_BUFFER];

unsigned char
*pCert

= usBuffer;

//Discovery buffer

unsigned long
unCertLen
= sizeof (usBuffer);
//Discovery length

long

iRet;

//return code (“unsigned long” in the Spec)

//First call: Execution call

iRet = gscBsiPkiReadCertificate (hCard, usAID, unAIDLen, pCert, &unCertLen);

if (iRet != BSI_OK)

ERROR_RETURN ("gscBsiPkiReadCertificate", iRet);

PROCESS_READ_CERTIFICATE

return (SUCCESS);

}

E.4 Smart Card Utility Provider Module Interface Definition

E.4.1 gscBsiUtilAcquireContext()

Purpose:
This function shall establish a session with a target container on the smart card by submitting the appropriate Authenticator in the BSIAuthenticator structure. For ACRs requiring external authentication (XAUTH), the uszAuthValue field of the BSIAuthenticator structure must contain a cryptogram calculated by encrypting a random challenge from gscBsiGetChallenge(). In cases where the card acceptance device authenticates the smart card, this function returns a BSI_TERMINAL_AUTH return code and the cryptogram is ignored.

For ACRs that require chained authentication such as BSI_ACR_PIN_AND_XAUTH, the calling application passes in the required authenticators in multiple BSIAuthenticator structures. In this example the calling application passes a PIN and the appropriate External Authentication cryptogram in two BSIAuthenticator structures. The client application must set the unAccessMethodType field of each BSIAuthenticator structure to match the type of authenticator contained in the structure. To satisfy an ACR of BSI_ACR_PIN_AND_XAUTH, the application would construct a sequence of two BSIAuthenticators: one containing a PIN and one containing an External Authentication cryptogram. The BSIAuthenticator structure containing the PIN would have an unAccessMethodType of BSI_AM_PIN, and the BSIAuthenticator structure containing the External Authentication cryptogram would have an unAccessMethodType of BSI_AM_XAUTH.
Prototype:
unsigned long

gscBsiUtilAcquireContext(
IN UTILCardHandle

hCard,

IN unsigned char *

uszAID,

IN unsigned long

unAIDLen,

IN BSIAuthenticator *
strctAuthenticator,

IN unsigned long

unAuthNb
);
Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszAID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
AID value length in bytes.

strctAuthenticator:
An array of structures containing the authenticator(s) specified by the ACR required to access a value in the container. The required list of authenticators is returned by gscBsiGcGetContainerProperties(). The calling application is responsible for allocating this structure.

unAuthNb:
Number of authenticator structures contained in strctAuthenticator.

The BSIAuthenticator structure is defined as follows. BSI_AUTHENTICATOR_MAX_LEN and BSI_KEY_LENGTH are implementation-dependent constants.

struct BSIAuthenticator {
unsigned long
unAccessMethodType;

unsigned long
unKeyIDOrReference;

unsigned char
uszAuthValue
[BSI_AUTHENTICATOR_MAX_LEN];

unsigned long
unAuthValueLen;

};

Variables associated with the BSIAuthenticator structure:

unAccessMethodType:
Access Method Type (see Table 3-1 in Section 3.1).

unKeyIDOrReference:
Key identifier or reference of the authenticator. This is used to distinguish between multiple authenticators with the same Access Method Type.

uszAuthValue:
Authenticator, can be an external authentication cryptogram or PIN. If the authenticator value is NULL, then BSI is in charge of gathering authentication information and authenticating to the card.
unAuthValueLen:
Authenticator value length in bytes.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_ACR_NOT_AVAILABLE

BSI_BAD_AUTH

BSI_CARD_REMOVED

BSI_PIN_BLOCKED

BSI_TERMINAL_AUTH

BSI_UNKNOWN_ERROR
E.4.2 gscBsiUtilConnect()

Purpose:
Establish a logical connection with the card in a specified reader.

Prototype:
unsigned long gscBsiUtilConnect(
IN unsigned char *
uszReaderName,

IN unsigned long
unReaderNameLen,

OUT UTILCardHandle *
hCard
);

Parameters:
hCard:
Card connection handle.

uszReaderName:
Name of the reader that the card is inserted into. If this field is a NULL pointer, the SPS shall attempt to connect to the card in the first available reader, as returned by a call to the BSI’s function gscBsiUtilGetReaderList(). The reader name string shall be stored as ASCII encoding String. (See Section 4.2)

unReaderNameLen:
Length of the reader name in bytes.

Return Codes:
BSI_OK

BSI_BAD_PARAM

BSI_UNKNOWN_READER

BSI_CARD_ABSENT

BSI_TIMEOUT_ERROR

BSI_UNKNOWN_ERROR
E.4.3 gscBsiUtilDisconnect()

Purpose:
Terminate a logical connection to a card.

Prototype:
unsigned long gscBsiUtilDisconnect(
IN UTILCardHandle
hCard
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR
E.4.4 gscBsiUtilBeginTransaction()

Purpose:
Starts an exclusive transaction with the smart card referenced by hCard. When the transaction starts, all other applications are blocked from accessing the smart card while the transaction is in progress. Two type of call can be made with that function: a blocking transaction call and a non-blocking transaction call. A boolean type parameter identify which mode is called. In the blocking mode, the call will return immediately if another client has an active transaction lock. The returned error code will be BSI_SC_LOCKED. In the non-blocking mode, the call will wait indefinitely for any active transaction locks to be released. A transaction must be completed by a call to gscBsiUtilEndTransaction().
For single-threaded BSI implementations, it can be assumed that each application will be associated with a separate process. The same process that starts a transaction must also complete the transaction. For multi-threaded BSI implementations, it can be assumed that each application will be associated with a separate thread and/or process. The same thread that starts a transaction must also complete the transaction.

If this function is called by a thread that has already called gscBsiUtilBeginTransaction() but has not yet called gscBsiUtilEndTransaction() it will return the error BSI_NOT_TRANSACTED.

If the SPS (Service Provider Software) does not support transaction locking, it should return the error code BSI_NO_SPSSERVICE in response to a call to gscBsiUtilBeginTransaction().

Prototype:
unsigned long gscBsiUtilBeginTransaction(

IN unsigned long
hCard;

IN boolean
blType;

);

Parameters:
hCard:
Card communication handle returned from gscBsiUtilConnect()

blType:
Boolean specifying the type of transaction call (blType set to “true” in blocking mode. blType set to “false” in non-blocking mode).

Return Codes:
BSI_OK
BSI_BAD_HANDLE
BSI_UNKNOWN_ERROR

BSI_SC_LOCKED

BSI_NOT_TRANSACTED

BSI_NO_SPSSERVICE
E.4.5 gscBsiUtilEndTransaction()

Purpose:
Completes a previously started transaction, allowing other applications to resume interactions with the card.

If this function is called by a thread that has not yet called gscBsiUtilBeginTransaction() it will return the error BSI_NOT_TRANSACTED.

If the SPS (Service Provider Software) does not support transaction locking, it should return the error code BSI_NO_SPSSERVICE in response to a call to gscBsiUtilEndTransaction().

Prototype:
unsigned long gscBsiUtilEndTransaction(
IN unsigned long
hCard
);

Parameters:
hCard:
Card communication handle returned from gscBsiUtilConnect().

Return Codes:
BSI_OK
BSI_BAD_HANDLE
BSI_UNKNOWN_ERROR

BSI_NOT_TRANSACTED

BSI_NO_SPSSERVICE
E.4.6 gscBsiUtilGetVersion()

Purpose:
Returns the BSI implementation version.

Prototype:
unsigned long gscBsiUtilGetVersion(
INOUT unsigned char *
uszVersion,

INOUT unsigned long *
punVersionLen
);

Parameters:
uszVersion:
The BSI and SPS version formatted as “major,minor,revision, build_number\0”. The version text shall be stored as ASCII encoded String. (See Section 4.2)

punVersionLen:
Length of the version string.

Return Codes:
BSI_OK

BSI_BAD_PARAM

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

Discovery Mode:

Parameters:
uszVersion:
Set to NULL.

punVersionLen:
Pointer to value containing the required buffer length to contain the version string, including a null terminator.

Return Codes:
BSI_OK

BSI_BAD_PARAM

BSI_UNKNOWN_ERROR

E.4.7 gscBsiUtilGetCardProperties()

Purpose:
Retrieves ID and capability information for the card.

Prototype:
unsigned long gscBsiUtilGetCardProperties(
IN UTILCardHandle
hCard,

INOUT unsigned char *
uszCCCUniqueID,

INOUT unsigned long *
punCCCUniqueIDLen,

OUT unsigned long *
punCardCapability
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

uszCCCUniqueID:
Buffer for the Card Capability Container ID.

punCCCUniqueIDLen:
Length of the CCC Unique ID string (input). Length of the returned Card Unique ID string including the null terminator (output).

punCardCapability:
Bit mask value defining the providers supported by the card. The bit masks represent the Generic Container Data Model, the Symmetric Key Interface, and the Public Key Interface providers respectively:

#define BSI_GCCDM
0x00000001
#define BSI_SKI
0x00000002
#define BSI_PKI
0x00000004

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_CARD_REMOVED

BSI_BAD_PARAM

BSI_INSUFFICIENT_BUFFER

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR

Discovery Mode:

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

uszCCCUniqueID:
Set to NULL.

punCCCUniqueIDLen:
Pointer to value containing the required buffer length for the CCC Unique ID string, including a null terminator.

punCardCapability:
Can be set to NULL, unused in discovery.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_CARD_REMOVED

BSI_BAD_PARAM

BSI_UNKNOWN_ERROR

E.4.8 gscBsiUtilGetCardStatus()

Purpose:
Checks whether a given card handle is associated with a card that is inserted into a powered up reader.

Prototype:
unsigned long gscBsiUtilGetCardStatus(
IN UTILCardHandle
hCard
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR
E.4.9 gscBsiUtilGetExtendedErrorText()

Purpose:
When a BSI function call returns an error, an application can make a subsequent call to this function to receive additional implementation specific error information, if available.

Prototype:
unsigned long gscBsiUtilGetExtendedErrorText(
IN UTILCardHandle
hCard,

OUT char
uszErrorText[255]

);

Parameters:
hCard:
Card connection handle gscBsiUtilConnect().
uszErrorText:
A fixed length buffer containing an implementation specific error text string. The text string is null-terminated, and has a maximum length of 255 characters including the null terminator. The calling application must allocate a buffer of 255 bytes. If an extended error text string is not available, this function returns a NULL string and BSI_NO_TEXT_AVAILABLE. The error text shall be stored as ASCII encoding String. (See Section 4.2)

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_NO_TEXT_AVAILABLE

BSI_UNKNOWN_ERROR
E.4.10 gscBsiUtilGetReaderList()

Purpose:
Retrieves the list of available readers.

Prototype:
unsigned long gscBsiUtilGetReaderList(
INOUT unsigned char * uszReaderList,

INOUT unsigned long * punReaderListLen
);

Parameters:
uszReaderList:
Reader list buffer. The reader list is returned as a multi-string, each reader name terminated by a ‘\0’. The list itself is terminated by an additional trailing ‘\0’ character.

punReaderListLen:
Reader list length in bytes including all terminating ‘\0’ characters.

Return Codes:
BSI_OK

BSI_BAD_PARAM

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

Discovery Mode:

Parameters:
uszReaderList:
Set to NULL.

punReaderListLen:
Required buffer length for Reader list in bytes including all terminating ‘\0’ characters.

Return Codes:
BSI_OK

BSI_BAD_PARAM

BSI_UNKNOWN_ERROR

E.4.11 gscBsiUtilPassthru()

Purpose:
Allows a client application to send a “raw” APDU through the BSI directly to the card and receive the APDU-level response.

Prototype:
unsigned long gscBsiUtilPassthru(
IN UTILCardHandle

hCard,

IN unsigned char *

uszCardCommand,

IN unsigned long

unCardCommandLen,

INOUT unsigned char *
uszCardResponse,

INOUT unsigned long *
punCardResponseLen
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszCardCommand:
The APDU to be sent to the card. That parameter must be in ASCII hexadecimal format.

unCardCommandLen:
Length of the APDU string to be sent.

uzsCardResponse:
Pre-allocated buffer for the APDU response from the card. The response must include the status bytes SW1 and SW2 returned by the card. If the size of the buffer is insufficient, the SPS shall return truncated response data and the return code BSI_INSUFFICIENT_BUFFER. That parameter must be in ASCII hexadecimal format.

punCardResponseLen:
Length of the APDU response. If the size of the uszCardResponse buffer is insufficient, the SPS shall return the correct size in this field.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_PARAM

BSI_INSUFFICIENT_BUFFER

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR

Discovery Mode (depending on usage):

Note: The discovery mechanism may cause the command APDU to be executed twice depending on the context of use.

The discovery mode is as follows:

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

uszCardCommand:
The APDU to be sent to the card.

unCardCommandLen:
Length of the APDU string to be sent.

uzsCardResponse:
Set to NULL.

punCardResponseLen:
Length of the buffer required to contain the APDU response.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR
E.4.12 gscBsiUtilReleaseContext()

Purpose:
Terminate a session with the target container on the card.

Prototype:
unsigned long gscBsiUtilReleaseContext(
IN UTILCardHandle
hCard,

IN unsigned char *
uszAID,

IN unsigned long
unAIDLen
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

uszAID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
AID value length in bytes.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR
E.5 Smart Card Generic Container Provider Module Interface Definition

E.5.1 gscBsiGcDataCreate()

Purpose:
Create a new data item in {Tag, Length, Value} format in the selected container.

Prototype:
unsigned long gscBsiGcDataCreate(
IN UTILCardHandle
hCard,

IN unsigned char *
uszAID,

IN unsigned long
unAIDLen,

IN GCtag
ucTag,

IN unsigned char *
uszValue,

IN unsigned long
unValueLen
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszAID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
AID value length in bytes.

ucTag:
Tag of data item to store.

uszValue:
Data value to store.

unValueLen:
Data value length in bytes.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_NO_MORE_SPACE

BSI_TAG_EXISTS

BSI_IO_ERROR

BSI_UNKNOWN_ERROR
E.5.2 gscBsiGcDataDelete()

Purpose:
Delete the data item associated with the tag value in the specified container.

Prototype:
unsigned long gscBsiGcDataDelete(
IN UTILCardHandle
hCard,

IN unsigned char *
uszAID,

IN unsigned long
unAIDLen,

IN GCtag
ucTag
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszAID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
AID value length in bytes.

ucTag:
Tag of data item to delete.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_TAG

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_IO_ERROR

BSI_UNKNOWN_ERROR
E.5.3 gscBsiGcGetContainerProperties()

Purpose:
Retrieves the properties of the specified container. Access Control Rules are common to all data items managed by the selected container.

Prototype:
unsigned long gscBsiGcGetContainerProperties(
IN UTILCardHandle

hCard,

IN unsigned char *

uszAID,

IN unsigned long

unAIDLen,

OUT Gcacr *

strctGCacr,

OUT GCContainerSize *
strctContainerSizes,

OUT unsigned char *

uszContainerVersion
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszAID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
AID value length in bytes.

strctGCacr:
Structure indicating access control conditions for all operations. The range of possible values for the members of this structure is defined in Table 3-2 (Section 3.1). The allowable ACRs for each function are listed in Table 3-3. unKeyIDOrReference contains the key identifier or reference for each access method contained in the ACR in order of appearance. unAuthNb is the number of access methods logically combined in the ACR. ACRID is RFU and must be NULL (0x00) in this version.

struct GCacr {

BSIAcr
strctCreateACR;

BSIAcr
strctDeleteACR;

BSIAcr
strctReadTagListACR;

BSIAcr
strctReadValueACR;

BSIAcr
strctUpdateValueACR;

};

struct BSIAcr {

unsigned long
unACRType;

unsigned long
unKeyIDOrReference;

unsigned long
unAuthNb;

unsigned long
unACRID;

};

strctContainerSizes:
For Virtual Machine cards, the size(in bytes) of the container specified by uszAID. unMaxNbDataItems is the size of the T-Buffer, and unMaxValueStorageSize is the size of the V-Buffer. For file system cards that cannot calculate these values, both fields of this structure will be set to 0.

struct GCContainerSize {

unsigned long
unMaxNbDataItems;

unsigned long
unMaxValueStorageSize;

}

uszContainerVersion:
Version of the container. The format of this value is application dependent. In cases where the card cannot return a container version, this string will contain only the null terminator “\0”.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR
E.5.4 gscBsiGcReadTagList()

Purpose:
Return the list of tags in the selected container.

Prototype:
unsigned long gscBsiGcReadTagList(
IN UTILCardHandle

hCard,

IN unsigned char *
uszAID,

IN unsigned long

unAIDLen,

INOUT Gctag *

TagArray,

INOUT unsigned long *
punNbTags
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszAID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
AID value length in bytes.

TagArray:
An array containing the list of tags for the selected container.

punNbTags:
Number of tags in TagArray.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

Discovery Mode:

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszAID:
Target container AID value.

unAIDLen:
AID value length in bytes.

TagArray:
Set to NULL.

punNbTags:
Number of tags which would be contained in a resulting TagArray.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_UNKNOWN_ERROR

E.5.5 gscBsiGcReadValue()

Purpose:
Returns the Value associated with the specified Tag.

Prototype:
unsigned long

gscBsiGcReadValue(

IN UTILCardHandle

hCard,

IN unsigned char *

uszAID,

IN unsigned long

unAIDLen,

IN GCtag

ucTag,

INOUT unsigned char *
uszValue,

INOUT unsigned long *
punValueLen
);
Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

uszAID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
AID value length in bytes.

ucTag:
Tag value of data item to read.

uszValue:
Value associated with the specified tag. The caller must allocate the buffer.

punValueLen:
Size of the buffer allocated by the caller to hold the returned Value (input). Size of the Value returned (output).

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_TAG

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_INSUFFICIENT_BUFFER

BSI_IO_ERROR

BSI_UNKNOWN_ERROR

Discovery Mode:

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

uszAID:
Target container AID value.

unAIDLen:
AID value length in bytes.

ucTag:
Tag value of data item to read.

uszValue:
Set to NULL.

punValueLen:
Size of the buffer required to hold the returned Value.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_TAG

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_IO_ERROR

BSI_UNKNOWN_ERROR

E.5.6 gscBsiGcUpdateValue()

Purpose:
Updates the Value associated with the specified Tag.

Prototype:
unsigned long
gscBsiGcUpdateValue(
IN UTILCardHandle
hCard,

IN unsigned char *
uszAID,

IN unsigned long
unAIDLen,

IN GCtag
ucTag,

IN unsigned char *
uszValue,

IN unsigned long
unValueLen
);
Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszAID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
AID value length in bytes.

ucTag:
Tag of data item to update.

uszValue:
New Value of the data item.

unValueLen:
Length in bytes of the new Value.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_TAG

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_NO_MORE_SPACE

BSI_IO_ERROR

BSI_UNKNOWN_ERROR
E.6 Smart Card Cryptographic Provider Module Interface Definition

E.6.1 gscBsiGetChallenge()

Purpose:
Retrieves a randomly generated challenge from the card as the first step of a challenge-response authentication protocol between the client application and the card. The client subsequently encrypts the challenge using a symmetric key and returns the encrypted random challenge to the card through a call to gscBsiUtilAcquireContext() in the uszAuthValue field of a BSIAuthenticator structure.

Prototype:
unsigned long

gscBsiGetChallenge(
IN UTILCardHandle

hCard,

IN unsigned char *

uszAID,

IN unsigned long

unAIDLen,

INOUT unsigned char *
uszChallenge,

INOUT unsigned long *
punChallengeLen
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszAID:
Target container AID value. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
AID value length in bytes.

uszChallenge:
Random challenge returned from the card.

punChallengeLen:
Length of random challenge in bytes.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

Discovery Mode:

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

uszAID:
Target container AID value.

unAIDLen:
AID value length in bytes.

uszChallenge:
Set to NULL.

punChallengeLen:
Length of buffer required to store returned random challenge in bytes.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR

E.6.2 gscBsiSkiInternalAuthenticate()

Purpose:
Computes a symmetric key cryptogram in response to a challenge. In cases where the card reader authenticates the card, this function does not return a cryptogram. In these cases a BSI_TERMINAL_AUTH will be returned if the card reader successfully authenticates the card. BSI_ACCESS_DENIED is returned if the card reader fails to authenticate the card.

Prototype:
unsigned long

gscBsiSkiInternalAuthenticate(
IN UTILCardHandle

hCard,

IN unsigned char*

uszAID,

IN unsigned long

unAIDLen,

IN unsigned char

ucAlgoID,

IN unsigned char*

uszChallenge,

IN unsigned long

unChallengeLen,

INOUT unsigned char *
uszCryptogram,

INOUT unsigned long *
punCryptogramLen
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszAID:
SKI provider module AID value. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
AID value length in bytes.

ucAlgoID:
Identifies the cryptographic algorithm that the card must use to encrypt the challenge. All conformant implementations shall, at a minimum, support DES3-ECB (Algorithm Identifier 0x81) and DES3-CBC (Algorithm Identifier 0x82). Implementations may optionally support other cryptographic algorithms.

uszChallenge:
Challenge generated by the client application and submitted to the card.

unChallengeLen:
Length of the challenge in bytes.

uszCryptogram:
The cryptogram computed by the card.

punCryptogramLen:
Length of the cryptogram computed by the card in bytes.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_ALGO_ID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_TERMINAL_AUTH

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

Discovery Mode:

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

uszAID:
SKI provider module AID value.

unAIDLen:
AID value length in bytes.

ucAlgoID:
Identifies the cryptographic algorithm that the card must use to encrypt the challenge. All conformant implementations shall, at a minimum, support DES3-ECB (Algorithm Identifier 0x81) and DES3-CBC (Algorithm Identifier 0x82). Implementations may optionally support other cryptographic algorithms.

uszChallenge:
Challenge generated by the client application and submitted to the card.

unChallengeLen:
Length of the challenge in bytes.

uszCryptogram:
Set to NULL.

punCryptogramLen:
Length of the buffer required to store the cryptogram computed by the card in bytes.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_ALGO_ID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_TERMINAL_AUTH

BSI_UNKNOWN_ERROR

E.6.3 gscBsiPkiCompute()

Purpose:
 Performs a private key computation on the message digest using the private key associated with the specified AID.

Prototype:
unsigned long gscBsiPkiCompute(
IN UTILCardHandle

hCard,

IN unsigned char *

uszAID,

IN unsigned long

unAIDLen,

IN unsigned char

ucAlgoID,

IN unsigned char *
 uszMessage,

IN unsigned long

unMessageLen,

INOUT unsigned char *
uszResult,

INOUT unsigned long *
punResultLen
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszAID:
PKI provider module AID value. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
AID value length in bytes.

ucAlgoID:
Identifies the cryptographic algorithm that will be used to generate the signature. All conformant implementations shall, at a minimum, support RSA_NO_PAD (Algorithm Identifier 0xA3). Implementations may optionally support other algorithms.

uszMessage:
The hash of the message to be signed.

unMessageLen:
Length of hashed message to be signed, in bytes.

uszResult:
Buffer containing the signature.

punResultLen:
Length of the signature buffer in bytes.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_ALGO_ID

BSI_CARD_REMOVED

BSI_ACCESS_DENIED

BSI_NO_CARDSERVICE

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

Discovery Mode:

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

uszAID:
PKI provider module AID value.

unAIDLen:
AID value length in bytes.

ucAlgoID:
Identifies the cryptographic algorithm that will be used to generate the signature. All conformant implementations shall, at a minimum, support RSA_NO_PAD (Algorithm Identifier 0xA3). Implementations may optionally support other algorithms.

uszMessage:
The hash of the message to be signed.

unMessageLen:
Length of hashed message to be signed, in bytes.

uszResult:
Set to NULL.

punResultLen:
Length of the required signature buffer in bytes.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_ALGO_ID

BSI_CARD_REMOVED

BSI_ACCESS_DENIED

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR

E.6.4 gscBsiPkiGetCertificate()

Purpose:
Reads the certificate from the card.

Prototype:
unsigned long gscBsiPkiGetCertificate(
IN UTILCardHandle

hCard,

IN unsigned char *

uszAID,

IN unsigned long

unAIDLen,

INOUT unsigned char *
uszCertificate,

INOUT unsigned long *
punCertificateLen
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszAID:
PKI provider module AID value. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
AID value length in bytes.

uszCertificate:
Buffer containing the certificate.

punCertificateLen:
Length of the certificate buffer in bytes.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_IO_ERROR

BSI_INSUFFICIENT_BUFFER

BSI_UNKNOWN_ERROR

Discovery Mode:

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

uszAID:
PKI provider module AID value.

unAIDLen:
AID value length in bytes.

uszCertificate:
Set to NULL.

punCertificateLen:
Length of the required certificate buffer in bytes.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_IO_ERROR

BSI_UNKNOWN_ERROR

E.6.5 gscBsiGetCryptoProperties()

Purpose:
Retrieves the Access Control Rules and private cryptographic key length managed by the PKI provider module.

Prototype:
unsigned long
gscBsiGetCryptoProperties(
IN UTILCardHandle
hCard,

IN unsigned char *
uszAID,

IN unsigned long
unAIDLen,

OUT CRYPTOacr *
strctCRYPTOacr,

OUT unsigned long *
punKeyLen
);

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
uszAID:
AID of the PKI provider. The parameter shall be in ASCII hexadecimal format.

unAIDLen:
Length of the AID of the PKI provider, in bytes.

strctCRYPTOacr:
Structure indicating access control conditions for all operations. The BSIAcr structure is defined in section E.5.3. The range of possible values for the members of this structure are defined in Table 3-2 (Section 3.1), and the allowable ACRs for each function in Table 3-4 (Section 3.2). keyIDOrReference contains the key identifier or reference for each access method contained in the ACR in order of appearance. AuthNb is the number of access methods logically combined in the ACR. ACRID is RFU and must be NULL (0x00) in this version. Note that the strctReadValueACR member maps to the gscBsiPkiGetCertificate() function.

struct CRYPTOacr {

BSIAcr
strctGetChallengeACR;

BSIAcr
strctInternalAuthenticateACR;

BSIAcr
strctPkiComputeACR;

BSIAcr
strctCreateACR;

BSIAcr
strctDeleteACR;

BSIAcr
strctReadTagListACR;

BSIAcr
strctReadValueACR;

BSIAcr
strctUpdateValueACR;

};
punKeyLen:
Length of the private key managed by the PKI provider.

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR

Appendix F— Java Language Binding for BSI Services

This appendix defines the Java language binding, which comprises a set of classes and interfaces that provide the basic support for a Java implementation of a SPM as defined in the GSC-IS.

Similar to the pseudo IDL specification, the Java translation is logically grouped into three functional modules:

· A Smart Card Utility Provider Module

· A Smart Card Generic Container Provider Module

· A Smart Card Cryptographic Provider Module.

This appendix provides the required syntax and semantics of 23 methods that correspond to the 23 functions in Chapter 4. These methods are collectively defined in the public interface gov.gsc.interfaces.BSI (see Section F.1), and shall be implemented within a public class gov.gsc.classes.GSCBSI.

F.1 Interfaces and classes

Based on the 23 methods described in this appendix (Section F.2 to Section F.4) the interface gov.gsc.interfaces.BSI is defined as follows:

public interface gov.gsc.interfaces.BSI
{

public abstract void gscBsiUtilAcquireContext(
int

hCard,

String

AID,

java.util.Vector
strctAuthenticator
) throws gov.gsc.classes.BSIException;

public abstract int gscBsiUtilConnect(
String
readerName
) throws gov.gsc.classes.BSIException;

public abstract void gscBsiUtilDisconnect(
int
hCard
) throws gov.gsc.classes.BSIException;

public abstract void gscBsiUtilBeginTransaction(

int

hCard
boolean
blType
) throws gov.gsc.classes.BSIException;

public abstract void gscBsiUtilEndTransaction(

int

hCard
) throws gov.gsc.classes.BSIException;
public abstract String gscBsiUtilGetVersion()

 throws gov.gsc.classes.BSIException;

public abstract CardProperties gscBsiUtilGetCardProperties(
int
hCard
) throws gov.gsc.classes.BSIException;

public abstract void gscBsiUtilGetCardStatus(
int
hCard
) throws gov.gsc.classes.BSIException;

public abstract String gscBsiUtilGetExtendedErrorText(
int
hCard
) throws gov.gsc.classes.BSIException;

public abstract java.util.Vector gscBsiUtilGetReaderList()
throws gov.gsc.classes.BSIException;

public abstract byte[] gscBsiUtilPassthru(
int

hCard,

byte[]
cardCommand
) throws gov.gsc.classes.BSIException;

public abstract void gscBsiUtilReleaseContext(
int

hCard,

String
AID
) throws gov.gsc.classes.BSIException;

public abstract void gscBsiGcDataCreate(
int

hCard,

String
AID,

short

tag,

byte[]
dValue
) throws gov.gsc.classes.BSIException;

public abstract void gscBsiGcDataDelete(
int

hCard,

String
AID,

short

tag
) throws gov.gsc.classes.BSIException;

public abstract ContainerProperties gscBsiGcGetContainerProperties(
int

hCard,

String
AID

) throws gov.gsc.classes.BSIException;

public abstract short[] gscBsiGcReadTagList(
int

hCard,

String
AID

) throws gov.gsc.classes.BSIException;

public abstract byte[] gscBsiGcReadValue(
int

hCard,

String
AID,

short

tag
) throws gov.gsc.classes.BSIException;

public abstract void gscBsiGcUpdateValue(

int

hCard,

String
AID,

short

tag,

byte[]
dValue
) throws gov.gsc.classes.BSIException;

public abstract byte[] gscBsiGetChallenge(

int

hCard,

String
AID
) throws gov.gsc.classes.BSIException;

public abstract byte[] gscBsiSkiInternalAuthenticate(
int

hCard,

String
AID,

short

algoID,

byte[]
challenge
) throws gov.gsc.classes.BSIException;

public abstract byte[] gscBsiPkiCompute(
int

hCard,

String
AID,

short

algoID,

byte[]
message
) throws gov.gsc.classes.BSIException;

public abstract byte[] gscBsiPkiGetCertificate(

int

hCard,

String
AID
) throws gov.gsc.classes.BSIException;

public abstract CryptoProperties gscBsiGetCryptoProperties(
int

hCard,

String
AID

) throws gov.gsc.classes.BSIException;

}

F.1.1 - The same class GSCBSI shall also implement the following interfaces:

· gov.gsc.interfaces.BSIReturnCodes

· gov.gsc.interfaces.CryptographicAlgoID

· gov.gsc.interfaces.BSIAccessControlRules

· gov.gsc.interfaces.BSICardCapabilities

F.1.1.1 - The interfaces are defined as follows:

public interface gov.gsc.interfaces.BSIReturnCodes

{

public static final int BSI_OK

= 0x00;

public static final int BSI_ACCESS_DENIED
= 0x01;

public static final int BSI_ACR_NOT_AVAILABLE
= 0x02;

public static final int BSI_BAD_AID

= 0x03;

public static final int BSI_BAD_ALGO_ID

= 0x04;

public static final int BSI_BAD_AUTH

= 0x05;

public static final int BSI_BAD_HANDLE

= 0x06;

public static final int BSI_BAD_PARAM

= 0x07;

public static final int BSI_BAD_TAG

= 0x08;

public static final int BSI_CARD_ABSENT

= 0x09;

public static final int BSI_CARD_REMOVED

= 0x0A;

public static final int BSI_NO_SPSSERVICE

= 0x0B;

public static final int BSI_IO_ERROR

= 0x0C;

public static final int BSI_INSUFFICIENT_BUFFER = 0x0E;

public static final int BSI_NO_CARDSERVICE
= 0x0F;

public static final int BSI_NO_MORE_SPACE
= 0x10;

public static final int BSI_PIN_LOCKED

= 0x11;

//Note : 0x12 is RFU

public static final int BSI_TAG_EXISTS

= 0x13;

public static final int BSI_TIMEOUT_ERROR

= 0x14;

public static final int BSI_TERMINAL_AUTH
= 0x15;

public static final int BSI_NO_TEXT_AVAILABLE
= 0x16;

public static final int BSI_UNKNOWN_ERROR
= 0x17;

public static final int BSI_UNKNOWN_READER
= 0x18;
public static final int BSI_SC_LOCKED

= 0x19;

public static final int BSI_NOT_TRANSACTED
= 0x20;

}

public interface gov.gsc.interfaces.CryptographicAlgoID

{

 //Mandatory Cryptographic Algorithms (see Section 4.3)

 //Cryptographic algorithm computation on the private key,

 //Chinese Remainder Theory.

 public static final short RSA_NO_PAD = 0xA3;

 //DES3-ECB cryptographic algorithm with a double length

 //key-size of 16 bytes.

 public static final short BSI_DES3_ECB = 0x81;

 //DES3-CBC cryptographic algorithm with a double length

 //key-size of 16 bytes.

 public static final short BSI_DES3_CBC = 0x82;

}

public interface gov.gsc.interfaces.BSIAccessControlRules

{

//BSI ACR Values as defined in the Table 3-1.

public static final int BSI_ACR_ALWAYS

= 0x00;

public static final int BSI_ACR_NEVER

= 0x01;

public static final int BSI_ACR_XAUTH

= 0x02;

public static final int BSI_ACR_XAUTH_OR_PIN
= 0x03;

public static final int BSI_SECURE_CHANNEL_GP
= 0x04;

public static final int BSI_ACR_PIN_ALWAYS
= 0x05;

public static final int BSI_ACR_PIN

= 0x06;

public static final int BSI_ACR_XAUTH_THEN_PIN
= 0x07;

public static final int BSI_ACR_UPDATE_ONCE
= 0x08;

public static final int BSI_ACR_PIN_THEN_XAUTH
= 0x09;

//NOTE: 0x0A currently not used

public static final int BSI_SECURE_CHANNEL_ISO
= 0x0B;

public static final int BSI_XAUTH_AND_PIN

= 0x0C;

//NOTE: RESERVED FOR FUTURE USED 0x0D-0xFF

}

public interface gov.gsc.interfaces.BSICardCapabilities
{

public static final int BSI_GCCDM

= 0x00000001;

public static final int BSI_SKI

= 0x00000002;

public static final int BSI_PKI

= 0x00000004;

}

F.1.1.2 - All 23 methods throw a BSIException if an error occurred during execution. A BSIException shall be constructed using one of the eligible return code listed for every individual method.

The class BSIException is defined as follows:

public class gov.gsc.classes.BSIException

extends java.lang.Exception
{

//Methods inherited from class java.lang.Throwable

// fillInStackTrace, getLocalizedMessage, getMessage,

// printStackTrace, printStackTrace, printStackTrace,

// toString

//Methods inherited from class java.lang.Object

// clone, equals, finalize, getClass, hashCode,

// notify, notifyAll, wait, wait, wait

//All Implemented Interfaces:

// java.io.Serializable

//FIELDS:

protected int errorCode = 0;

//CONSTRUCTORS:

//Constructor specifying the error code value as

//defined in the Table 4-1

public BSIException(int error)

{

 super();

 errorCode = error;

}

//Constructor specifying the error code value

//and corresponding message as defined in the Table 4-1
public BSIException(int error,

 String msg)

{

 super(msg);

 errorCode = error;

}

//ACCESSORS:

//Gets error code

//Returns: errorCode

public int getErrorCode()

{ return errorCode; }

}

F.2 Smart Card Utility Provider Module Interface Definition

F.2.1 gscBsiUtilAcquireContext()

Purpose:
This function shall establish a session with a target container on the smart card by submitting the appropriate Authenticator in the BSIAuthenticator structure. For ACRs requiring external authentication (XAUTH), the authValue field of the BSIAuthenticator structure must contain a cryptogram calculated by encrypting a random challenge from gscBsiGetChallenge(). In cases where the card acceptance device authenticates the smart card, this function returns a BSI_TERMINAL_AUTH return code and the cryptogram is ignored.

For ACRs that require chained authentication such as BSI_ACR_PIN_AND_XAUTH, the calling application passes in the required authenticators in multiple BSIAuthenticator structures. In this example the calling application passes a PIN and the appropriate External Authentication cryptogram in two BSIAuthenticator structures. The client application must set the accessMethodType field of each BSIAuthenticator structure to match the type of authenticator contained in the structure. To satisfy an ACR of BSI_ACR_PIN_AND_XAUTH, the application would construct a sequence of two BSIAuthenticators: one containing a PIN and one containing an External Authentication cryptogram. The BSIAuthenticator structure containing the PIN would have an accessMethodType of BSI_AM_PIN, and the BSIAuthenticator structure containing the External Authentication cryptogram would have an accessMethodType of BSI_AM_XAUTH.

Prototype:
public abstract void gscBsiUtilAcquireContext(
 int

hCard,

 String

AID,

 java.util.Vector
strctAuthenticator

) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
AID of the target service provider or container. The AID shall be stored as an ASCII hexadecimal string.

strctAuthenticator:
Vector of BSIAuthenticator objects containing the authenticator(s) specified by the ACR required to access a value in the container. The required list of authenticators is returned by gscBsiGcGetContainerProperties(). The calling application is responsible for constructing this object.

The BSIAuthenticator class is defined as follows:

public class gov.gsc.classes.BSIAuthenticator

 {

 //FIELDS:

protected int
accessMethodType;

protected int
keyIDOrReference;

protected byte[] authValue;

//CONSTRUCTORS:

public BSIAuthenticator()

{

 accessMethodType = 0;

 keyIDOrReference = 0;

 authValue = “”;

}

public BSIAuthenticator(int

amType,

 int

keyIDOrRef,

 byte[]
authVal)

{

 accessMethodType = amType;

 keyIDOrReference = keyIDOrRef;

 authValue = authVal;

}

//ACCESSORS:

public int getAccessMethodType()

{ return accessMethodType; }

public void setAccessMethodType(int type)

{ accessMethodType = type; }

public int getKeyIDOrReference()

{ return keyIDOrReference; }

public void setKeyIDOrReferece(int keyIDOrRef)

{ keyIDOrReference = keyIDOrRef; }

public byte[] getAuthValue()

{ return authValue; }

public void setAuthValue(byte[] auth)

{ authValue = auth; }

}

The fields of the BSIAuthenticator class are:

accessMethodType:
Access Method Type (see Table 3-1 in Section 3.1).

keyIDOrReference:
Key identifier or reference of the authenticator. This is used to distinguish between multiple authenticators with the same Access Method Type.
authValue:
Authenticator, can be an external authentication cryptogram or PIN. If the authenticator value is NULL, then BSI is in charge of gathering authentication information and authenticating to the card.
Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_ACR_NOT_AVAILABLE

BSI_BAD_AUTH

BSI_CARD_REMOVED

BSI_PIN_BLOCKED

BSI_TERMINAL_AUTH

BSI_UNKNOWN_ERROR

F.2.2 gscBsiUtilConnect()

Purpose:
Establish a logical connection with the card inserted in a specified reader. BSI_TIMEOUT_ERROR will be returned if a connection cannot be established within a specified time. The timeout value is implementation dependent.

Prototype:
public abstract int gscBsiUtilConnect(
 String readerName
) throws gov.gsc.classes.BSIException;

Parameter: readerName:
Name of the reader that the card is inserted into. If this field is an empty String, the SPS shall attempt to connect to the card in the first available reader, as returned by a call to the BSI’s function gscBsiUtilGetReaderList(). The Name of the reader shall be stored as ASCII encoding Strings. (See Section 4.2)

Return Value: hCard: Card connection handle.

Return codes:
BSI_OK

BSI_UNKNOWN_READER

BSI_CARD_ABSENT

BSI_TIMEOUT_ERROR

BSI_UNKNOWN_ERROR

F.2.3 gscBsiUtilDisconnect()

Purpose:
Terminate a logical connection to a card.

Prototype:
public abstract void gscBsiUtilDisconnect(
 int
hCard
) throws gov.gsc.classes.BSIException;

Parameter:
hCard: Card connection handle from gscBsiUtilConnect().
Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR

F.2.4 gscBsiUtilBeginTransaction()

Purpose:
Starts an exclusive transaction with the smart card referenced by hCard. When the transaction starts, all other applications are blocked from accessing the smart card while the transaction is in progress. Two type of call can be made with that function: a blocking transaction call and a non-blocking transaction call. A boolean type parameter identify which mode is called. In the blocking mode, the call will return immediately if another client has an active transaction lock. The returned error code will be BSI_SC_LOCKED. In the non-blocking mode, the call will wait indefinitely for any active transaction locks to be released. A transaction must be completed by a call to gscBsiUtilEndTransaction().
For single-threaded BSI implementations, it can be assumed that each application will be associated with a separate process. The same process that starts a transaction must also complete the transaction. For multi-threaded BSI implements, it can be assumed that each application will be associated with a separate thread and/or process. The same thread that starts a transaction must also complete the transaction.

If this function is called by a thread that has already called gscBsiUtilBeginTransaction() but has not yet called gscBsiUtilEndTransaction() it will return the error BSI_NOT_TRANSACTED.

If the SPS (Service Provider Software) does not support transaction locking, it should return the error code BSI_NO_SPSSERVICE in response to a call to gscBsiUtilBeginTransaction().

Prototype:
public abstract void gscBsiUtilBeginTransaction(

int
hCard

boolean
blType

) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card communication handle returned from gscBsiUtilConnect()

blType:
Boolean specifying the type of transaction call (blType set to “true” in blocking mode. blType set to “false” in non blocking mode).

 Return Code:
BSI_OK
BSI_BAD_HANDLE
BSI_UNKNOWN_ERROR

BSI_SC_LOCKED

BSI_NOT_TRANSACTED

BSI_NO_SPSSERVICE
F.2.5 gscBsiUtilEndTransaction()

Purpose:
Completes a previously started transaction, allowing other applications to resume interactions with the card.

If this function is called by a thread that has not yet called gscBsiUtilBeginTransaction() it will return the error BSI_NOT_TRANSACTED.

If the SPS (Service Provider Software) does not support transaction locking, it should return the error code BSI_NO_SPSSERVICE in response to a call to gscBsiUtilEndTransaction().

Prototype:
public abstract void gscBsiUtilEndTransaction(

int
hCard
) throws gov.gsc.classes.BSIException;
Parameters:
hCard:
Card communication handle returned from gscBsiUtilConnect().

Return Codes:
BSI_OK
BSI_BAD_HANDLE
BSI_UNKNOWN_ERROR

BSI_NOT_TRANSACTED

BSI_NO_SPSSERVICE
F.2.6 gscBsiUtilGetVersion()

Purpose:
Returns the BSI implementation version.

Prototype:
public abstract String gscBsiUtilGetVersion()

 throws gov.gsc.classes.BSIException;

Return Value:
version:
A String representing the BSI and SPS’s version formatted as “major,minor,revision,build_number”. The value for an SPS conformant with this version of the GSC-IS is “2,1,0,<build number>”. The build number field is vendor/implementation dependent. The version shall be stored as ASCII encoded Strings. (See Section 4.2)

Return codes:
BSI_OK

BSI_UNKNOWN_ERROR

F.2.7 gscBsiUtilGetCardProperties()

Purpose:
Retrieves ID and capability information for the card.

Prototype:
public abstract CardProperties gscBsiUtilGetCardProperties(
 int
hCard
) throws gov.gsc.classes.BSIException;

Parameter:
hCard:
Card connection handle from gscBsiUtilConnect().

Return Value: cardProps: A CardProperties object defined as follows:

public class gov.gsc.classes.CardProperties

{

//FIELDS:

protected int

cardCapability;

protected byte[] CCCUniqueID;

//CONSTRUCTORS:

public CardProperties(int capability,

 byte[] uniqueID)

{

 cardCapability = capability;

 CCCUniqueID = uniqueID;

}

//ACCESSORS

public int getCardCapability()

{ return cardCapability; }

public byte[] getCCCUniqueID()

{ return CCCUniqueID; }

public void setCardCapability(int capability)

{ cardCapability = capability; }

public void setCCCUniqueID(byte[] id)

{ CCCUniqueID = id; }

}

where the fields are described as follows:

CCCUniqueID:
String for the Card Capability Container ID.

cardCapability:
Bit mask value defining the providers supported by the card. The bit masks represent the Generic Container Data Model, the Generic Container Data Model Extended, the Symmetric Key Interface, and the Public Key Interface providers respectively.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR

F.2.8 gscBsiUtilGetCardStatus()

Purpose:
Checks whether a given card’s handle is associated with a card that is inserted into a powered up reader.

Prototype:
public abstract void gscBsiUtilGetCardStatus(
 int
hCard
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR

F.2.9 gscBsiUtilGetExtendedErrorText()

Purpose:
When a BSI function call throws a BSIException, an application can make a subsequent call to this function to receive additional error information from the card reader driver layer, if available. Since the GSC-IS architecture accommodates different card reader driver layers, the error text information will be dependent on the card reader driver layer used in a particular implementation. This function must be called immediately after the error has occurred.

Prototype:
public abstract String gscBsiUtilGetExtendedErrorText(
 int
hCard
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle gscBsiUtilConnect().
Return Value: errorText:
A String of maximum 255 characters including the null terminator, containing an implementation specific error text. If an extended error text string is not available, this function returns an empty string and BSI_NO_TEXT_AVAILABLE. The error text shall be stored as ASCII encoding Strings. (See Section 4.2)

Return Codes:
BSI_OK

BSI_BAD_HANDLE

BSI_NO_TEXT_AVAILABLE

BSI_UNKNOWN_ERROR

F.2.10 gscBsiUtilGetReaderList()

Purpose:
Retrieves the list of available readers.

Prototype:
public abstract java.util.Vector gscBsiUtilGetReaderList()

throws gov.gsc.classes.BSIException;

Return Value:
vReaderList:
Vector of Strings containing a list of the available readers. The Strings shall be in ASCII format.

Return codes:
BSI_OK

BSI_UNKNOWN_ERROR

F.2.11 gscBsiUtilPassthru()

Purpose:
Allows a client application to send a “raw” APDU through the BSI directly to the card and receive the APDU-level response.

Prototype:
public abstract byte[] gscBsiUtilPassthru(

int
hCard,

byte[]
cardCommand
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
cardCommand:
An array of bytes representing the APDU to be sent to the card. The parameter must be in ASCII hexadecimal format.

Return Value: cardResponse:
An array of bytes representing the APDU response from the card. The parameter must be in ASCII hexadecimal format. The response must include the status bytes SW1 and SW2 returned by the card.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR

F.2.12 gscBsiUtilReleaseContext()

Purpose:
Terminate a session with the target container on the card.

Prototype:
public abstract void gscBsiUtilReleaseContext(
 int
hCard,

 String
AID
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

AID:
Target container AID value. The AID shall be stored as an ASCII hexadecimal string.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_CARD_REMOVED

BSI_UNKNOWN_ERROR

F.3 Smart Card Generic Container Provider Module Interface Definition

F.3.1 gscBsiGcDataCreate()

Purpose:
Create a new data item in {Tag, Length, Value} format in the selected container.

Prototype:
public abstract void gscBsiGcDataCreate(
 int
hCard,

 String
AID,

 short
tag,

 byte[]
dValue
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The AID shall be stored as an ASCII hexadecimal string.

tag:
Tag of data item to store.

dValue:
Data value to store.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_NO_MORE_SPACE

BSI_TAG_EXISTS

BSI_IOERROR

BSI_UNKNOWN_ERROR

F.3.2 gscBsiGcDataDelete()

Purpose:
Delete the data item associated with the tag value in the specified container.

Prototype:
public abstract void gscBsiGcDataDelete(
 int
hCard,

 String
AID,

 short
tag
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The AID shall be stored as an ASCII hexadecimal string.

tag:
Tag of data item to delete.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_TAG

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_IO_ERROR

BSI_UNKNOWN_ERROR

F.3.3 gscBsiGcGetContainerProperties()

Purpose:
Retrieves the properties of the specified container. ACRs are common to all data items managed by the selected container.

Prototype:
public abstract ContainerProperties gscBsiGcGetContainerProperties(
 int
hCard,

 String
AID
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The AID shall be stored as an ASCII hexadecimal string.

Return Value:
containerProps: A ContainerProperties object defined as follows:

public class gov.gsc.classes.ContainerProperties

{

//FIELDS:

protected GCacr strctGCacr;

protected GCContainerSize strctContainerSizes;

protected String containerVersion;

//CONSTRUCTORS:

public ContainerProperties()

{

 strctGCacr = new GCacr();

 strctContainerSizes = new GCContainerSize();

 containerVersion = new

byte[CONTAINER_VERSION_MAXLENGTH];

}

public ContainerProperties(GCacr acr,

 GCContainerSize sizes,

 String version)

{

 strctGCacr = acr;

 strctContainerSizes = sizes;

 containerVersion = version;

}

//ACCESSORS

public GCacr getGCacr()

{ return strctGCacr; }

public GCContainerSize getGCContainerSize()

{ return strctContainerSizes; }

public String getContainerVersion()

{ return containerVersion; }

public void setGCacr(GCacr thisACR)

{ strctGCacr = thisACR; }

public void setGCContainerSize(GCContainerSize thisSize)

{ strctContainerSizes = thisSize; }

public void setContainerVersion(String thisVersion)

{ containerVersion = thisVersion; }

}

where the fields are described as follows:

strctGCacr:
Object indicating access control conditions for all operations. The range of possible values for the instance variables of this object is defined in Table 3-2 (Section 3.1). The allowable ACRs for each function are listed in Table 3-3 (Section 3.2). keyIDOrReference contains the key identifier or reference for each access method contained in the ACR in order of appearance. AuthNb is the number of access methods logically combined in the ACR. ACRID is RFU and must be NULL (0x00) in this version.

The class GCacr is defined as follows:

public class gov.gsc.classes.GCacr

{

//FIELDS:

protected BSIAcr createACR;

protected BSIAcr deleteACR;

protected BSIAcr readTagListACR;

protected BSIAcr readValueACR;

protected BSIAcr updateValueACR;

//CONSTRUCTORS

public GCacr()

{

 createACR = new BSIAcr();

 deleteACR = new BSIAcr();

 readTagListACR = new BSIAcr();

 readValueACR = new BSIAcr();

 updateValueACR = new BSIAcr();

}

public GCacr(BSIAcr c, BSIAcr d, BSIAcr rt, BSIAcr rv, BSIAcr u)

{

 createACR = c;

 deleteACR = d;

 readTagListACR = rt;

 readValueACR = rv;

 updateValueACR = u;

}

//ACCESSORS

public void setCreateACR(BSIAcr i)

{ createACR = i; }

public void setDeleteACR(BSIAcr i)

{ deleteACR = i; }

public void setReadTagListACR(BSIAcr i)

{ readTagListACR = i; }

public void setReadValueACR(BSIAcr i)

{ readValueACR = i; }

public void setUpdateValueACR(BSIAcr i)

{ updateValueACR = i; }

public BSIAcr getCreateACR()

{ return createACR; }

public BSIAcr getDeleteACR()

{ return deleteACR; }

public BSIAcr getReadTagListACR()

{ return readTagListACR; }

public BSIAcr getReadValueACR()

{ return readValueACR; }

public BSIAcr getUpdateValueACR()

{ return updateValueACR; }

}

The class BSIAcr is defined as follows:

public class gov.gsc.classes.BSIAcr

{

//FIELDS:

protected int ACRType;

protected int[] keyIDOrReference;

protected int authNb;

protected int ACRID;

//CONSTRUCTORS

public GCacr()

{

 ACRType = 0;

 keyIDOrReference = new int[MaxNbAM];

 authNb = 0;

 ACRID = 0;

}

public GCacr(int acrType, int[] keyIDOrRef, int authNum, int acrID)

{

 ACRType = acrType;

 keyIDOrReference = keyIDOrRef;

 authNb = authNum;

 ACRID = acrID;

}

//ACCESSORS

public void setACRType(int i)

{ ACRType = i; }

public void setKeyIDOrReference(int[] i)

{ keyIDOrReference = i; }

public void setAuthNb(int i)

{ authNb = i; }

public void setACRID(int i)

{ ACRID = i; }

public int getACRType()

{ return ACRType; }

public int[] getKeyIDOrReference()

{ return keyIDOrReference; }

public int getAuthNb()

{ return authNb; }

public int getACRID()

{ return ACRID; }

}strctContainerSizes: Object indicating the size (in bytes) of the container specified by the AID.
public class gov.gsc.classes.GCContainerSize
{

protected int maxNbDataItems;

protected int maxValueStorageSize;

 //CONSTRUCTORS

public GCContainerSize ()

 {

 maxNbDataItems = 0;

 maxValueStorageSize = 0;

 }

public GCContainerSize (int i, int s)

 {

 maxNbDataItems = i;

 maxValueStorageSize = s;

 }

//ACCESSORS

public void setMaxNbDataItems(int i)

 { maxNbDataItems = i; }

public void setMaxValueStorageSize(int i)

 { maxValueStorageSize = i; }

public int getMaxNbDataItems()

 { return maxNbDataItems; }

public int getMaxValueStorageSize()

 { return maxValueStorageSize; }

}

containerVersion:
A String representing the version of the container. The format of this value is application dependent.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR

F.3.4 gscBsiGcReadTagList()

Purpose:
Return the list of tags in the selected container.

Prototype:
public abstract short[] gscBsiGcReadTagList(
 int
hCard,

 String
AID
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The AID shall be stored as an ASCII hexadecimal string.

Return Value: tagListArray:
An array containing the list of tags for the selected container. The tags shall be of the type “short”.

Return codes:
BSI_OK
BSI_BAD_HANDLE

BSI_BAD_AID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_UNKNOWN_ERROR
F.3.5 gscBsiGcReadValue()

Purpose:
Returns the Value associated with the specified Tag.

Prototype:
public abstract byte[] gscBsiGcReadValue(
 int
hCard,

 String
AID,

 short
tag
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().

AID:
Target container AID value. The AID shall be stored as an ASCII hexadecimal string.

tag:
Tag value of data item to read.

Return Value: dValue:
Data Value associated with the specified tag.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_TAG

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_IO_ERROR

BSI_UNKNOWN_ERROR

F.3.6 gscBsiGcUpdateValue()

Purpose:
Updates the Value associated with the specified Tag.

Prototype:
public abstract void gscBsiGcUpdateValue(

 int
hCard,

 String
AID,

 short
tag,

 byte[]
dValue
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The AID shall be stored as an ASCII hexadecimal string.

tag:
Tag of data item to update.

dValue:
New Value of the data item.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_TAG

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_NO_MORE_SPACE

BSI_IO_ERROR

BSI_UNKNOWN_ERROR

F.4 Smart Card Cryptographic Provider Module Interface Definition

F.4.1 gscBsiGetChallenge()

Purpose:
Retrieves a randomly generated challenge from the card as the first step of a challenge-response authentication protocol between the client application and the card. The client subsequently encrypts the challenge using a symmetric key and returns the encrypted random challenge to the card through a call to gscBsiUtilAcquireContext() in the authValue instance field of the BSIAuthenticator object.

Prototype:
public abstract byte[]
gscBsiGetChallenge(

 Int
hCard,

 String
AID
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
Target container AID value. The AID shall be stored as an ASCII hexadecimal string.

Return Value: challenge:
An array of bytes representing a random challenge returned from the card.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR

F.4.2 gscBsiSkiInternalAuthenticate()

Purpose:
Computes a symmetric key cryptogram in response to a challenge. In cases where the card reader authenticates the card, this function does not return a cryptogram. In these cases a BSI_TERMINAL_AUTH will be returned if the card reader successfully authenticates the card. BSI_ACCESS_DENIED is returned if the card reader fails to authenticate the card.

Prototype:
public abstract byte[]
gscBsiSkiInternalAuthenticate(
 int
hCard,

 String
AID,

 short
algoID,

 byte[]
challenge
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
SKI provider module AID value. The AID shall be stored as an ASCII hexadecimal string.

algoID:
Identifies the cryptographic algorithm that the card must use to encrypt the challenge. All conformant implementations shall, at a minimum, support the following algorithms: DES3-ECB (Algorithm Identifier 0x81) and DES3-CBC (Algorithm Identifier 0x82). Implementations may optionally support other cryptographic algorithms.

challenge:
Challenge generated by the client application and submitted to the card.

Return Value: cryptogram:
The cryptogram computed by the card.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_ALGO_ID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_UNKNOWN_ERROR

F.4.3 gscBsiPkiCompute()

Purpose:
Performs a private key computation on the message digest using the private key associated with the specified AID.

Prototype:
public abstract byte[]
gscBsiPkiCompute(
 int
hCard,

 String
AID,

 short
algoID,

 byte[]
message
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
PKI provider module AID value. The AID shall be stored as an ASCII hexadecimal string.

algoID:
Identifies the cryptographic algorithm that will be used to generate the signature. All conformant implementations shall, at a minimum, support RSA_NO_PAD (Algorithm Identifier 0xA3). Implementations may optionally support other algorithms.

message:
The message digest to be signed.

Return Value: result:
An array of bytes containing the signature.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_BAD_PARAM

BSI_BAD_ALGO_ID

BSI_CARD_REMOVED

BSI_ACCESS_DENIED

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR

F.4.4 gscBsiPkiGetCertificate()

Purpose:
Reads the certificate from the card.

Prototype:
public abstract byte[]
gscBsiPkiGetCertificate(

 int
hCard,

 String
AID
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
PKI provider module AID value. The AID shall be stored as an ASCII hexadecimal string.

Return Value: certificate:
An array of bytes containing the certificate.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_ACCESS_DENIED

BSI_IO_ERROR

BSI_UNKNOWN_ERROR

F.4.5 gscBsiGetCryptoProperties()

Purpose:
Retrieves the Access Control Rules associated with the PKI provider module.

Prototype:
public abstract CryptoProperties gscBsiGetCryptoProperties(
 int

hCard,

 String

AID
) throws gov.gsc.classes.BSIException;

Parameters:
hCard:
Card connection handle from gscBsiUtilConnect().
AID:
AID of the PKI provider. The AID shall be stored as an ASCII hexadecimal string.

Return Value: cryptoProps:
A CryptoProperties object defined as follows:

public class gov.gsc.classes.CryptoProperties
{

// FIELDS

protected CRYPTOacr strctCRYPTOacr;

protected int keyLen;

// CONSTRUCTORS

public CryptoProperties()

{

strctCRYPTOacr = new CRYPTOacr();

keyLen = 0;

}

public CryptoProperties(CRYPTOacr acr, int keylen)

{

strctCRYPTOacr = acr;

keyLen = keylen;

}

// ACCESSORS

public CRYPTOacr getCRYPTOacr()

{ return strctCRYPTOacr; }

public int getKeyLen()

{ return keyLen; }

public void setCRYPTOacr(CRYPTOacr thisACR)

{ strctCRYPTOacr = thisACR; }

public void setKeyLen(int keylen)

{ keyLen = keylen; }

}
strctCRYPTOacr:
Object indicating access control conditions for all operations. The BSIAcr structure is defined in section F.3.3. The range of possible values for the instance fields of this object are defined in Table 3-2 (Section 3.1), and the allowable ACRs for each function in Table 3-4 (Section 3.2). keyIDOrReference contains the key identifier or reference for each access method contained in the ACR in order of appearance. authNb is the number of access methods logically combined in the ACR. ACRID is RFU and must be NULL (0x00) in this version. Note that the readValueACR member maps to the gscBsiPkiGetCertificate() function.

public class gov.gsc.classes.CRYPTOacr

{

//FIELDS:

protected BSIAcr getChallengeACR;

protected BSIAcr internalAuthenticateACR;

protected BSIAcr pkiComputeACR;

protected BSIAcr createACR;

protected BSIAcr deleteACR;

protected BSIAcr readTagListACR;

protected BSIAcr readValueACR;

protected BSIAcr updateValueACR;
//CONSTRUCTORS

public CRYPTOacr()

{

getChallengeACR = new BSIAcr();

internalAuthenticateACR = new BSIAcr;

pkiComputeACR = new BSIAcr;

 createACR = new BSIAcr();

 deleteACR = new BSIAcr();

 readTagListACR = new BSIAcr();

 readValueACR = new BSIAcr();

updateValueACR = new BSIAcr();
}

public CRYPTOacr(BSIAcr ch, BSIAcr ia, BSIAcr pc, BSIAcr c, BSIAcr d, BSIAcr rt, BSIAcr rv, BSIAcr u)

{

getChallengeACR = ch;

internalAuthenticateACR = ia;

pkiComputeACR = pc;

createACR = c;

deleteACR = d;

readTagListACR = rt;

readValueACR = rv;

updateValueACR = u;

}

//ACCESSORS

public void setGetChallengeACR(int i)

{ getChallengeACR = i; }

public void setInternalAuthenticateACR(int i)

{ internalAuthenticateACR = i; }

public void setPkiComputeACR(int i)

{ pkiComputeACR = i; }

public void setCreateACR(BSIAcr i)

{ createACR = i; }

public void setDeleteACR(BSIAcr i)

{ deleteACR = i; }

public void setReadTagListACR(BSIAcr i)

{ readTagListACR = i; }

public void setReadValueACR(BSIAcr i)

{ readValueACR = i; }

public void setUpdateValueACR(BSIAcr i)

{ updateValueACR = i; }

public int getGetChallengeACR()

{ return getChallengeACR; }

public int getInternalAuthenticateACR()

{ return internalAuthenticateACR; }

public int getPkiComputeACR()

{ return pkiComputeACR; }

public BSIAcr getCreateACR()

{ return createACR; }

public BSIAcr getDeleteACR()

{ return deleteACR; }

public BSIAcr getReadTagListACR()

{ return readTagListACR; }

public BSIAcr getReadValueACR()

{ return readValueACR; }

public BSIAcr getUpdateValueACR()

{ return updateValueACR; }

}

keyLen:
Length of the private key managed by the PKI provider.

Return codes:
BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_CARD_REMOVED

BSI_NO_CARDSERVICE

BSI_UNKNOWN_ERROR

Appendix G— Contactless Smart Card Requirements

This appendix defines the requirements for GSC contactless smart cards, in accordance with the decisions of the Government Smart Card Interagency Advisory Board's Physical Access Interoperability Working Group. Contactless smart cards are often used in physical access control applications, but may also be used in the same environment as contact type GSC cards. These requirements must therefore satisfy the following design goals:

GSC contactless smart cards should provide a minimum interoperability mechanism for cardholder identification in both physical access control and contact card type environments. This cardholder identification mechanism should use the same card edge functions (APDUs) and Data Models as those defined for GSC contact cards, to ensure interoperability with middleware designed for GSC contact cards.

The minimum interoperability mechanism for cardholder identification is to read a SEIWG string from a fixed location using APDUs defined in the GSC virtual card edge interface.

G.1 Card to Reader Interoperability

GSC contactless cards and readers shall conform to ISO 14443 Parts 1 through 4. Cryptographic functionality is not required, but GSC contactless cards that implement cryptography shall use FIPS approved cryptographic algorithms.

G.2 Contactless Card Edge

GSC contactless cards shall support two ISO 7816-4 [ISO4] APDUs required to select the SEIWG container/file and read the SEIWG string; READ BINARY and SELECT EF.

Note: The return code 0x9000 indicates command success, all other return codes indicate failure. Additional information on the READ BINARY APDU and SELECT EF APDUs can be found in Sections 5.1.1.2 and 5.1.1.4, respectively.

The Master File shall be automatically selected when a GSC contactless file system card is powered up. The applet that manages the SEIWG container shall be automatically selected on a GSC contactless Virtual Machine card at power up. SELECT MF and SELECT AID APDUs are therefore not required.

GSC contactless cards may optionally support other APDUs. These additional APDUs should be taken from the GSC file system card edge definitions in Chapter 5, to achieve maximum interoperability with middleware written for GSC contact cards.

G.3 Data Model Requirements

The SEIWG string is stored in a separate mandatory container/file in TLV format (EF 0007). This is necessary because host applications operating in a physical access control environment must be able to retrieve SEIWG strings quickly from a fixed location, and because no Access Control Rules are imposed on SEIWG container read operations. For file system cards, this file shall be a transparent file.

	SEIWG File / Buffer(see note below)
	EF 0007
	Always Read

	Data Element (TLV)
	Tag
	Type
	Max. Bytes

	SEIWG Data
	30
	Fixed
	40*

	Error Detection Code
	FE
	LRC
	1

Note: Only the FID component is mandated for the SEIWG File / Buffer. For container based implementations, the RID component of the AID is not defined by this specification.

All GSC contactless cards shall contain the SEIWG file as defined above as well as a valid Card Capability Container (see Chapter 6). Physical access control applications may elect not to read this container for reasons of efficiency. This is possible because GSC contactless cards directly implement a subset of the GSC virtual card edge interface and therefore require no APDU mapping.

*NIST Technical editor comment: Ssubject to change pending GSC-IAB resolution on the use of 25-byte packed BCD or 40-byte unpacked BCD.

Appendix H— Acronyms

ACA

Access Control Applet

ACR

Access Control Rule

AID

Application Identifier

ANSI

American National Standards Institute

APDU

Application protocol data unit

API

Applications Programming Interface

ASN.1

Abstract Syntax Notation One

ATR

Answer-to-Reset

b

Binary value

BSI

Basic Services Interface

CAD

Card Accepting Device

CCC

Card Capability Container

CEI

Card Edge Interface

CHV

Card Holder Verification

CLA

Class Byte of the Command Message

CT

Capability Tuple

DES

Data Encryption Standard

DES3

Triple Data Encryption Standard
DES3-CBC
Triple Data Encryption Standard in Cipher Block Chaining mode

DES3-ECB
Triple Data Encryption Standard in Electronic Codebook mode

EDC

Error Detection Code

FID

File ID

FCI

File Control Information

GCA

Generic Container Applet

GSC
Government Smart Card, as defined in the Smart Access Common Identification Card Solicitation.
GSC-IS
Government Smart Card Interoperability Specification

h

Hexadecimal value
IEC

International Electrotechnical Commission

INS
Instruction Byte of Command Message associated with the T=0 and T=1 protocol.

ISO

International Organization for Standardization

LEN or Len

Length

LOUD

Length of useful data.

LRC

Longitudinal Redundancy Check associated with the T=1 protocol.

LSB

Less Significant Byte

LSN

Least significant nibbles

MAC

Message Authentication Code

MSB

Most Significant Byte

MSE

Manage security environment command

OCF

Open Card Framework

P1(2)

Parameters used in the T=0 and T=1 protocol.

PC/SC

Personal Computer/Smart Card

PIN

Personal Identification Number

PKI

Public Key Infrastructure

PKCS

Public Key Cryptography Standards

RFU

Reserved for Future Use

SEIWG
Security Enterprise Integration Working Group

SKI

Symmetric Key Interface

SPM

Service Provider Module

SPS

Service Provider Software

ST

Status Tuple

SW1(2)
Status Word1 (2)

T=0

Character-oriented asynchronous half duplex transmission protocol

T=1

Block-oriented asynchronous half duplex transmission protocol

TLV

Tag-Length-Value

USZ

Unsigned Zero-Terminated Character String

VCEI

Virtual Card Edge Interface

VM

Virtual Machine

VM CEI
Virtual Machine Card Edge Interface

XSI

Extended Service Interface(s)

Interagency Report 6887- 2003 Edition

C O M P U T E R S E C U R I T Y

Government Smart Card Interoperability Specification

The National Institute of Standards and Technology

NIST Interagency Report 6887

- 2003 Edition

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

DF

DF

CCC EF

EF

DF

MF

� Key Set and Key Levels are applicable to v2.0 for backward compatibility. Key Set ID refers to the key number and the Key Level is used to indicate whether the referenced key is part of the READ or WRITE Key Set.

_1116393643

